335 research outputs found

    Solar Oscillations and Convection: II. Excitation of Radial Oscillations

    Full text link
    Solar p-mode oscillations are excited by the work of stochastic, non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the expression for the radial mode excitation rate derived by Nordlund and Stein (Paper I) using numerical simulations of near surface solar convection. We first apply this expression to the three radial modes of the simulation and obtain good agreement between the predicted excitation rate and the actual mode damping rates as determined from their energies and the widths of their resolved spectral profiles. We then apply this expression for the mode excitation rate to the solar modes and obtain excellent agreement with the low l damping rates determined from GOLF data. Excitation occurs close to the surface, mainly in the intergranular lanes and near the boundaries of granules (where turbulence and radiative cooling are large). The non-adiabatic pressure fluctuations near the surface are produced by small instantaneous local imbalances between the divergence of the radiative and convective fluxes near the solar surface. Below the surface, the non-adiabatic pressure fluctuations are produced primarily by turbulent pressure fluctuations (Reynolds stresses). The frequency dependence of the mode excitation is due to effects of the mode structure and the pressure fluctuation spectrum. Excitation is small at low frequencies due to mode properties -- the mode compression decreases and the mode mass increases at low frequency. Excitation is small at high frequencies due to the pressure fluctuation spectrum -- pressure fluctuations become small at high frequencies because they are due to convection which is a long time scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue). 17 pages, 27 figures, some with reduced resolution -- high resolution versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048

    Mutually Penetrating Motion of Self-Organized 2D Patterns of Soliton-Like Structures

    Full text link
    Results of numerical simulations of a recently derived most general dissipative-dispersive PDE describing evolution of a film flowing down an inclined plane are presented. They indicate that a novel complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life experiments satisfying the validity conditions of the theory are possible: the required sufficiently viscous liquids are readily available.Comment: minor corrections, 4 pages, LaTeX, 6 figures, mpeg simulations available upon or reques

    Helioseismic analysis of the hydrogen partition function in the solar interior

    Full text link
    The difference in the adiabatic gradient gamma_1 between inverted solar data and solar models is analyzed. To obtain deeper insight into the issues of plasma physics, the so-called ``intrinsic'' difference in gamma_1 is extracted, that is, the difference due to the change in the equation of state alone. Our method uses reference models based on two equations of state currently used in solar modeling, the Mihalas-Hummer-Dappen (MHD) equation of state, and the OPAL equation of state (developed at Livermore). Solar oscillation frequencies from the SOI/MDI instrument on board the SOHO spacecraft during its first 144 days in operation are used. Our results confirm the existence of a subtle effect of the excited states in hydrogen that was previously studied only theoretically (Nayfonov & Dappen 1998). The effect stems from internal partition function of hydrogen, as used in the MHD equation of state. Although it is a pure-hydrogen effect, it takes place in somewhat deeper layers of the Sun, where more than 90% of hydrogen is ionized, and where the second ionization zone of helium is located. Therefore, the effect will have to be taken into account in reliable helioseismic determinations of the astrophysically relevant helium-abundance of the solar convection zone.Comment: 30 pages, 4 figures, 1 table. Revised version submitted to Ap

    Stellar Model Analysis of the Oscillation Spectrum of eta Bootis Obtained from MOST

    Get PDF
    Eight consecutive low-frequency radial p-modes are identified in the G0 IV star eta Bootis based on 27 days of ultraprecise rapid photometry obtained by the MOST (Microvariability & Oscillations of Stars) satellite. The MOST data extend smoothly to lower overtones the sequence of radial p-modes reported in earlier groundbased spectroscopy by other groups. The lower-overtone modes from the MOST data constrain the interior structure of the model of eta Boo. With the interior fit anchored by the lower-overtone modes seen by MOST, standard models are not able to fit the higher-overtone modes with the same level of accuracy. The discrepancy is similar to the discrepancy that exists between the Sun's observed p-mode frequencies and the p-mode frequencies of the standard solar model. This discrepancy promises to be a powerful constraint on models of 3D convection.Comment: 30 pages with 14 figures. Accepted for publication in Ap

    How much do helioseismological inferences depend upon the assumed reference model?

    Get PDF
    We investigate systematic uncertainties in determining the profiles of the solar sound speed, density, and adiabatic index by helioseismological techniques. We find that rms uncertainties-averaged over the sun of ~ 0.2%-0.4% are contributed to the sound speed profile by each of three sources: 1)the choice of assumed reference model, 2) the width of the inversion kernel, and 3) the measurements errors. The density profile is about an order of magnitude less well determined by the helioseismological measurements. The profile of the adiabatic index is determined to an accuracy of about 0.2% . We find that even relatively crude reference models yield reasonably accurate solar parameters.Comment: Accepted for publication in ApJ . Related material at http://www.sns.ias.edu/~jn

    Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Get PDF
    This paper reviews some of the important advances made over the last decade concerning theory of roAp stars.Comment: 9 pages, 5 figure

    Helioseismological Implications of Recent Solar Abundance Determinations

    Full text link
    We show that standard solar models are in good agreement with the helioseismologically determined sound speed and density as a function of solar radius, the depth of the convective zone, and the surface helium abundance, as long as those models do not incorporate the most recent heavy element abundance determinations. However, sophisticated new analyses of the solar atmosphere infer lower abundances of the lighter metals (like C, N, O, Ne, and Ar) than the previously widely used surface abundances. We show that solar models that include the lower heavy element abundances disagree with the solar profiles of sound speed and density as well as the depth of the convective zone and the helium abundance. The disagreements for models with the new abundances range from factors of several to many times the quoted uncertainties in the helioseismological measurements. The disagreements are at temperatures below what is required for solar interior fusion reactions and therefore do not significantly affect solar neutrino emission. If errors in thecalculated OPAL opacities are solely responsible for the disagreements, then the corrections in the opacity must extend from 2 times 10^6 K (R = 0.7R_Sun)to 5 times 10^6 K (R = 0.4 R_Sun), with opacity increases of order 10%.Comment: ApJ in press; clarified Figure

    Choroidal and retinal thinning in chronic kidney disease independently associate with eGFR decline and are modifiable with treatment

    Get PDF
    In patients with chronic kidney disease (CKD), there is an unmet need for novel biomarkers that reliably track kidney injury, demonstrate treatment-response, and predict outcomes. Here, we investigated the potential of retinal optical coherence tomography (OCT) to achieve these ends in a series of prospective studies of patients with pre-dialysis CKD (including those with a kidney transplant), patients with kidney failure undergoing kidney transplantation, living kidney donors, and healthy volunteers. Compared to health, we observed similar retinal thinning and reduced macular volume in patients with CKD and a kidney transplant. However, choroidal thinning in CKD was not seen in patients with a kidney transplant whose choroids resembled those of healthy volunteers. In CKD, the degree of choroidal thinning related to falling eGFR and extent of kidney scarring. Following kidney transplantation, choroidal thickness increased rapidly (~10%) and was maintained over 1-year, whereas gradual choroidal thinning was observed during the 12 months following kidney donation. In patients with CKD, retinal and choroidal thickness independently associated with eGFR decline over 2 years. These observations highlight the potential for retinal OCT to act as a non-invasive monitoring and prognostic biomarker of kidney injury
    • 

    corecore