720 research outputs found
Recommended from our members
Using topographic derivatives of high resolution data on Earth and Mars to determine active processes on Mars
Recommended from our members
The morphologic difference between crater slopes with and without gullies on Mars
Recommended from our members
Comparison of the Morphology of Crater-Slopes with Gullies to those Without Gullies
Recommended from our members
Preliminary findings from geological mapping of the Hokusai (H5) quadrangle of Mercury
Quadrangle geological maps from Mariner 10 data cover 45% of the surface of Mercury at 1:5M scale. Orbital MESSENGER data, which cover the entire planetary surface, can now be used to produce finer scale geological maps, including regions unseen by Mariner 10.
Hokusai quadrangle (0–90° E; 22.5–66° N) is in the hemisphere unmapped by Mariner 10. It contains prominent features which are already being studied, including: Rachmaninoff basin, volcanic vents within and around Rachmaninoff, much of the Northern Plains and abundant wrinkle ridges. Its northern latitude makes it a prime candidate for regional geological mapping since compositional and topographical data, as well as Mercury Dual Imaging System (MDIS) data, are available for geological interpretation. This work aims to produce a map at 1:2M scale, compatible with other new quadrangle maps and to complement a global map now in progress
Recommended from our members
Preliminary observations of Rustaveli basin, Mercury
Rustaveli basin on Mercury (82.76° E, 52.39° N) is a 200.5 km diameter peak-ring basin. Since the approval of its name on April 24, 2012, it has not featured prominently in the literature. It is a large and important feature within the Hokusai (H5) quadrangle of which we are currently producing a 1:2M scale geological map. Here, we describe our first observations of Rustaveli
Recommended from our members
Spatial distribution and morphometric measurements of circum-Caloris knobs on Mercury: Application of novel shadow measurements
The Caloris basin (1550 km diameter) is the largest, well-preserved impact feature on Mercury. Its impact ejecta, excavated from the lower crust and uppermost mantle, provides an opportunity to investigate the interior materials of the planet. Based on Mariner 10 data, which cover only the eastern third of the basin, ‘hummocky plains’, associated with Caloris, consisting of ‘low, closely spaced to scattered hills 0.3-1 km across’ were interpreted as Caloris impact ejecta. These plains were subsequently named the Odin Formation, and the knobs associated with them were interpreted as degraded ejecta blocks. To test for an impact ejecta origin for the circum-Caloris knobs, we have mapped their locations and made morphometric measurements and high-resolution observations
Recommended from our members
Candidate constructional volcanic edifices on Mercury
[Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we describe two candidate constructional volcanic edifices we have found on Mercury and discuss how these edifices may have formed
Recommended from our members
Geological Mapping of the Debussy Quadrangle (H-14) Preliminary Results
Geological mapping of Mercury is crucial to build an understanding of the history of the planet and to set the context for BepiColombo’s observations [1]. Geo-logical mapping of the Debussy quadrangle (H-14) is now underway as part of a program to map the entire planet at a scale of 1:3M using MESSENGER data [2]. The quadrangle is located in the southern hemisphere of Mercury at 0o – 90o E and 22.5o – 65o S. This will be the first high resolution map of the quadrangle as it was not imaged by Mariner 10
Recommended from our members
Investigating the Martian atmosphere using the ExoMars 2016 lander
Accurate modelling of the Martian atmosphere is essential both for planning and completing future missions to the Martian surface, and for accurate analysis and interpretation of the data that they return. Large dust storms and local wind patterns can affect spacecraft landing profiles, and the level of dust present in the atmosphere may impact lander performance. The ExoMars 2016 Mission will carry an Entry, Descent and Landing Demonstrator Module (EDM), primarily designed to test the ability of ESA’s lander technology to carry a science package to the surface [1]. The Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) team [2] will use the module’s entry and descent trajectory to characterise the structure of the atmosphere along the travelled landing profile, and to determine properties of the atmosphere, such as density and wind speed, over a wide altitude range from the upper atmosphere to the surface. Aerosol abundances, including atmospheric dust, will also be characterised. These combined datasets will enable more accurate predictions of the atmospheric environment that future landers will encounter. EDM’s surface science package, DREAMS (Dust characterisation, Risk assessment, and Environment Analyser on the Martian Surface), includes sensors to measure wind speed and direction, surface temperature, pressure, and the amount of atmospheric dust present near the surface [3]. We will use the descent and surface profile data collected by EDM to verify and improve current Martian atmospheric modelling completed at The Open University, using both the global circulation and mesoscale models.
[1] Forget et al. (2011) Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris.
[2] Ferri et al. (2012) 9th International Planetary Probe Workshop (IPPW9), Toulouse.
[3] Esposito et al. (2013) EPSC Abstracts Vol. 8, EPSC2013-815
Recommended from our members
Small smooth units (‘young’ lavas?) abutting lobate scarps on Mercury
We have identified small units abutting, and so stratigraphy younger than, lobate scarps. This post dates the end of large scale smooth plains formation at the onset of global contraction. This elaborates the history of volcanism on Mercury
- …