704 research outputs found
Towards an understanding of the contribution of global learning to the wellbeing and mental health of young people with special educational needs
The aim of this study was to explore the possible impact of global learning interventions on students’ mental health and wellbeing. The study employed a mixed methods design, which consisted of student (N11) and teacher (N4) interviews, as well as a mental health and wellbeing questionnaire. The participants of this study all attended an autistic specific secondary school that served as a Global Learning Programme Expert Centre. The findings of the study indicated that students who participated in lessons that had a global learning focus, experienced a small but significant improvement in mental health and wellbeing. This small-scale study may lead to more extensive research in the area
Expression study of molecular markers involved in staminality and differentiation in the colonial ascidians Botryllus schlosseri
Ascidians are invertebrate chordates, members of the subphylum Tunicata that represents the sister group of vertebrates. They offer the opportunity to investigate and compare the behaviour of both embryonic and adult stem cells. Morphological data suggest the presence of undifferentiated haemocytes (haemoblasts) able to proliferate and give rise to terminally differentiated cells. Relevant studies were also carried out in the neural lineage, in which neural progenitor cells regenerate the brain after extirpation. In B. schlosseri, during the cyclical generation change, bud primordial cells, probably deriving from a pool of long-living stem cells, are able to give rise to the neural complex. We screened the B. schlosseri genome and transcriptome, looking for transcripts/genes showing similarity to vertebrate molecular markers of haematopoietic and neural stem cells. Four sequences, orthologous to mammalian transcripts considered markers of haematopoietic progenitor cells, were identified in B. schlosseri. They are: bsabcg2, bscd133, bsgata1/2/3 and bsgata4/5/6. In situ hybridization on haemocyte monolayers and colony sections, resulted in labelling of cells in the sub-endostylar haemolymph lacunae. This results matches previously morphological data that identified the endostyle as a stem cell niche. Quantitative real time PCR (qRT-PCR) highlighted the over-expression of the considered genes in the mid-cycle phase of the blastogenetic cycle. During this phase, there is the formation of new secondary buds emerging from the primary buds. The high expression levels of bsabcg2, bscd133, bsgata1/2/3 and bsgata4/5/6 genes in the mid-cycle phase reflect the presence of undifferentiated cells involved in proliferative and differentiation events required for giving rise to the new blastogenetic generation. For the neural lineage, we identified and characterised two transcripts orthologues of vertebrate neural stem cell markers (BsSox2 and BsMsi2). We also studied the expression, during the blastogenetic cycle, of a panel of genes already known to be involved in ascidian larvae neurogenesis, i.e., orthologues of Pax2/5/8, Hox1 and Hox3. ISH with riboprobes for BsSox2, BsMsi2, BsPax2/5/8, BsHox1 and BsHox3 revealed a common labelling in the endostyle niche. The presence of bssox2, bsmsi2, bspax2/5/8, bshox1 and bshox3 transcripts in the cells of the region known to be a stem cell niche, led us to conclude, not only that our probes identified undifferentiated cells but even that in B. schlosseri are probably present a single population of pluripotent stem cells that could differentiate into haematopoietic or neural cells. The qRT-PCR, showed an high expression level in the mid-cycle phase of all the putative neural markers considered. In this phase new secondary buds are produced from primary buds. Each new bud needs its own neural complex and this requires the proliferation of undifferentiated cells to originate neural gland rudiment and cerebral ganglion. Bssox2, bsmsi2, bspax2/5/8, bshox1 and bshox3 increased their expression associated with these neurogenesis events and this support their involvement in neural stem cell differentiation
Biological Aging and Immune Senescence in Children with Perinatally Acquired HIV
Chronic HIV-infected children suffer from premature aging and aging-related diseases. Viral replication induces an ongoing inflammation process, with the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), the activation of the immune system, and the production of proinflammatory cytokines. Although combined highly active antiretroviral therapy (ART) has significantly modified the natural course of HIV infection, normalization of T and B cell phenotype is not completely achievable; thus, many HIV-infected children display several phenotypical alterations, including higher percentages of activated cells, that favor an accelerated telomere attrition, and higher percentages of exhausted and senescent cells. All these features ultimately lead to the clinical manifestations related to premature aging and comorbidities typically observed in older general population, including non-AIDS-related malignancies. Therefore, even under effective treatment, the premature aging process of HIV-infected children negatively impacts their quality and length of life. This review examines the available data on the impact of HIV and ART on immune and biological senescence of HIV-infected children
Three-dimensional confinement of vapor in nanostructures for sub-Doppler optical resolution
International audienceWe confine a Cs thermal vapor in the interstitial regions of a glass opal. We perform linear reflection spectroscopy on a cell whose window is covered with a thin film (10 or 20 layers) of 1000 nm (or 400 nm) diameter glass spheres and observe sub-Doppler structures in the optical spectrum for a large range of oblique incidences. This original feature associated with the inner (3-dimensional) confinement of the vapor in the interstitial regions of the opal evokes a Dicke narrowing. We finally consider possible micron-size references for optical frequency clocks based on weak, hard to saturate, molecular line
Laser-Induced Graphenization of PDMS as Flexible Electrode for Microsupercapacitors
Laser graphenization of polymeric surfaces has emerged as one of the most promising technologies to fabricate flexible electrodes. Unfortunately, despite the large number of materials suitable for laser-induced graphene (LIG) fabrication, there is a lack of stretchable polymers, hindering the full exploitation of LIG for flexible electronics. Herein, the laser graphenization of polydimethylsiloxane (PDMS), the most exploited elastomeric substrate for flexible electronic device fabrication, is proposed for the first time. The low carbon content and the absence of aromatic structures strongly limit the graphenization process resulting in limited conduction properties. Nevertheless, by adding triethylene glycol (TEG) as carbon source into the PDMS matrix, it is possible to improve the graphenization and to reduce the sheet resistance of the written LIG by two orders of magnitude down to 130 ohm sq−1. The PDMS-TEG material becomes a suitable candidate for flexible microsupercapacitor fabrication with specific capacitance values as high as 287 µF cm−2 and energy and power density approaching LIG-based supercapacitors fabricated onto traditional polyimide substrates
A Cockpit-Based Application for Traffic Aware Trajectory Optimization
The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP
- …