9 research outputs found

    Personalised 3D Printed Medicines: Optimising Material Properties for Successful Passive Diffusion Loading of Filaments for Fused Deposition Modelling of Solid Dosage Forms

    Get PDF
    Although not readily accessible yet to many community and hospital pharmacists, fuse deposition modelling (FDM) is a 3D printing technique that can be used to create a 3D pharmaceutical dosage form by employing drug loaded filaments extruded via a nozzle, melted and deposited layer by layer. FDM requires printable filaments, which are commonly manufactured by hot melt extrusion, and identifying a suitable extrudable drug-excipient mixture can sometimes be challenging. We propose here the use of passive diffusion as an accessible loading method for filaments that can be printed using FDM technology to allow for the fabrication of oral personalised medicines in clinical settings. Utilising Hansen Solubility Parameters (HSP) and the concept of HSP distances (Ra) between drug, solvent, and filament, we have developed a facile pre-screening tool for the selection of the optimal combination that can provide a high drug loading (a high solvent-drug Ra, >10, and an intermediate solvent filament Ra value, ~10). We have identified that other parameters such as surface roughness and stiffness also play a key role in enhancing passive diffusion of the drug into the filaments. A predictive model for drug loading was developed based on Support Vector Machine (SVM) regression and indicated a strong correlation between both Ra and filament stiffness and the diffusion capacity of a model BCS Class II drug, nifedipine (NFD), into the filaments. A drug loading, close to 3% w/w, was achieved. 3D printed tablets prepared using a PVA-derived filament (Hydrosupport, 3D Fuel) showed promising characteristics in terms of dissolution (with a sustained release over 24 h) and predicted chemical stability (>3 years at 25 ◦C/60% relative humidity), similar to commercially available NFD oral dosage forms. We believe FDM coupled with passive diffusion could be implemented easily in clinical settings for the manufacture of tailored personalised medicines, which can be stored over long periods of time (similar to industrially manufactured solid dosage forms)

    Application of accelerated predictive stability studies in Extemporaneously Compounded Formulations of Chlorhexidine to Assess the Shelf Life

    No full text
    2023 Descuento MDPIIndustrially fabricated medicines have a well-defined shelf life supported by rigorous studies before their approval for commercialization. However, the shelf life of extemporaneous compounding topical formulations prepared at hospitals tends to be shorter, especially when no data are available to prove a longer stability period. Also, the storage conditions are unknown in many circumstances. Accelerated Predictive Stability (APS) studies have been shown to be a useful tool to predict in a faster and more accurate manner the chemical stability of extemporaneously compounded formulations requiring a minimum amount of formulation, thereby reducing the chemical drug waste per study. Shelf life will be allocated based on scientific data without compromising drug efficacy or safety. In this work, the APS approach was applied to the commercially available Cristalmina® (CR) and an extemporaneously compounded formulation of chlorhexidine (DCHX). A different degradation kinetic was found between DCHX and CR (Avrami vs. zero-order kinetics, respectively). This can explain the different shelf life described by the International Council for Harmonisation of Technical Requirements Registration Pharmaceuticals Human Use (ICH) conditions between both formulations. A predicted stability for the DCHX solution was obtained from the extrapolation of the degradation rate in long-term conditions from the Arrhenius equation. The estimated degradation from the Arrhenius equation for DCHX at 5 ºC, 25 ºC, and 30 ºC at 365 days was 3.1%, 17.4%, and 25.9%, respectively. The predicted shelf life, in which the DCHX content was above 90%, was 26.67 months under refrigerated conditions and 5.75 and 2.24 months at 25 and 30 ºC, respectively. Currently, the Spanish National Formulary recommends a shelf life of no longer than 3 months at room temperature for DCHX solution. Based on the predicted APS and confirmed by experimental long-term studies, we have demonstrated that the shelf life of DCHX extemporaneously compounded formulations could be prolonged by up to 6 months.Universidad Complutense de MadridMinisterio de Ciencia e Investigación (España)Depto. de Farmacia Galénica y Tecnología AlimentariaFac. de FarmaciaTRUEpubDescuento UC

    Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale

    No full text
    Transferosomes, also known as transfersomes, are ultradeformable vesicles for transdermal applications consisting of a lipid bilayer with phospholipids and an edge activator and an ethanol/aqueous core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or amongst the lipid bilayer. Compared to liposomes, transferosomes are able to reach intact deeper regions of the skin after topical administration delivering higher concentrations of active substances making them a successful drug delivery carrier for transdermal applications. Most transferosomes contain phosphatidylcholine (C18) as it is the most abundant lipid component of the cell membrane, and hence, it is highly tolerated for the skin, decreasing the risk of undesirable effects, such as hypersensitive reactions. The most common edge activators are surfactants such as sodium deoxycholate, Tween® 80 and Span® 80. Their chain length is optimal for intercalation within the C18 phospholipid bilayer. A wide variety of drugs has been successfully encapsulated within transferosomes such as phytocompounds like sinomenine or apigenin for rheumatoid arthritis and leukaemia respectively, small hydrophobic drugs but also macromolecules like insulin. The main factors to develop optimal transferosomal formulations (with high drug loading and nanometric size) are the optimal ratio between the main components as well as the critical process parameters for their manufacture. Application of quality by design (QbD), specifically design of experiments (DoE), is crucial to understand the interplay among all these factors not only during the preparation at lab scale but also in the scale-up process. Clinical trials of a licensed topical ketoprofen transferosomal gel have shown promising results in the alleviation of symptons in orthreothritis with non-severe skin and subcutaneous tissue disorders. However, the product was withdrawn from the market which probably was related to the higher cost of the medicine linked to the expensive manufacturing process required in the production of transferosomes compared to other conventional gel formulations. This example brings out the need for a careful formulation design to exploit the best properties of this drug delivery system as well as the development of manufacturing processes easily scalable at industrial level.Depto. de Farmacia Galénica y Tecnología AlimentariaFac. de FarmaciaInstituto Universitario de Farmacia IndustrialTRUEpu

    Engineering of 3D printed personalized polypills for the treatment of the metabolic syndrome

    No full text
    Metabolic syndrome is a collection of abnormalities, including at least three of the following insulin resistance, hypertension, dyslipidemia, type 2 diabetes, obesity, inflammation, and non-alcoholic fatty liver disease. 3D printed solid dosage forms have emerged as a promising tool enabling the fabrication of personalized medicines and offering solutions that cannot be achieved by industrial mass production. Most attempts found in the literature to manufacture polypills for this syndrome contain just two drugs. However, most fixed-dose combination (FDC) products in clinical practice required the use of three or more drugs. In this work, Fused deposition modelling (FDM) 3D printing technology coupled with Hot-melt extrusion (HME) has been successfully applied in the manufacture of polypills containing nifedipine (NFD), as an antihypertensive drug, simvastatin (SMV), as an antihyperlipidemic drug, and gliclazide (GLZ) as an antiglycemic drug. Hanssen solubility parameters (HSPs) were utilized as predictors to guide the formation of amorphous solid dispersion between drug and polymer to ensure miscibility and enhanced oral bioavailability. The HSP varied from 18.3 for NFD, 24.6 for SMV, and 7.0 for GLZ while the total solubility parameter for the excipient mixture was 27.30.5. This allowed the formation of an amorphous solid dispersion in SMV and GLZ 3D printed tablets compared to NFD which was partially crystalline. Popypill showed a dual release profile combining a faster SMV release (< 6 h) with a 24 h sustained release for NDF and GLZ. This work demonstrated the transformation of FDC into dynamic dose-personalized polypills.Universidad Complutense de MadridMInisterio de Ciencia e InnovaciónDepto. de Farmacia Galénica y Tecnología AlimentariaFac. de FarmaciaTRUEpu

    Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: Poly-aggregates, oligomers and monomers

    No full text
    Antifungal drugs such as amphotericin B (AmB) interact with lipids and phospholipids located on fungal cell membranes to disrupt them and create pores, leading to cell apoptosis and therefore efficacy. At the same time, the interaction can also take place with cell components from mammalian cells, leading to toxicity. AmB was selected as a model antifungal drug due to the complexity of its supramolecular chemical structure which can self-assemble in three different aggregation states in aqueous media: monomer, oligomer (also known as dimer) and poly-aggregate. The interplay between AmB self-assembly and its efficacy or toxicity against fungal or mammalian cells is not yet fully understood. To the best of our knowledge, this is the first report that investigates the role of excipients in the supramolecular chemistry of AmB and the impact on its biological activity and toxicity. The monomeric state was obtained by complexation with cyclodextrins resulting in the most toxic state, which was attributed to the greater production of highly reactive oxygen species upon disruption of mammalian cell membranes, a less specific mechanism of action compared to the binding to the ergosterol located in fungal cell membranes. The interaction between AmB and sodium deoxycholate resulted in the oligomeric and polyaggregated forms which bound more selectively to the ergosterol of fungal cell membranes. NMR combined with XRD studies elucidated the interaction between drug and excipient to achieve the AmB aggregation states, and ultimately, their diffusivity across membranes. A linear correlation between particle size and the efficacy/toxicity ratio was established allowing to modulate the biological effect of the drug and hence, to improve pharmacological regimens. However, particle size is not the only factor modulating the biological response but also the equilibrium of each state which dictates the fraction of free monomeric form available. Tuning the aggregation state of AmB formulations is a promising strategy to trigger a more selective response against fungal cells and to reduce the toxicity in mammalian cells.European Regional Development FundEuropean Society of Clinical Microbiology an Infection Diseases (ESCMID)Engineering and Physical Sciences Research CouncilDepto. de Farmacia Galénica y Tecnología AlimentariaFac. de FarmaciaInstituto Universitario de Farmacia IndustrialTRUEpu

    Creación de nuevo recurso educativo virtual para estudiantes de grado en Farmacia.

    No full text
    Creación de nuevo recurso educativo virtual para estudiantes de grado en Farmacia. El presente proyecto es continuación de un proyecto concedido con financiación el año 2019 y en él se continuarán desarrollando nuevos recursos educativos virtuales como los que ya se han hecho este curso, y que han tenido excelente acogida por los alumnos, para facilitar la adquisición del conocimiento de los estudiantes de Farmacia especialmente de aquellos temas en los que la bibliografía disponible es escasa como en el caso de la Asignatura de Tecnología Farmacéutica III en los temas dedicados a la industria farmacéutica.Depto. de Farmacia Galénica y Tecnología AlimentariaSección Deptal. de Farmacología y Toxicología (Veterinaria)Fac. de FarmaciaFac. de VeterinariaFALSEsubmitte
    corecore