5,789 research outputs found
New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces
A generalized version of Bertrand's theorem on spherically symmetric curved
spaces is presented. This result is based on the classification of
(3+1)-dimensional (Lorentzian) Bertrand spacetimes, that gives rise to two
families of Hamiltonian systems defined on certain 3-dimensional (Riemannian)
spaces. These two systems are shown to be either the Kepler or the oscillator
potentials on the corresponding Bertrand spaces, and both of them are maximally
superintegrable. Afterwards, the relationship between such Bertrand
Hamiltonians and position-dependent mass systems is explicitly established.
These results are illustrated through the example of a superintegrable
(nonlinear) oscillator on a Bertrand-Darboux space, whose quantization and
physical features are also briefly addressed.Comment: 13 pages; based in the contribution to the 28th International
Colloquium on Group Theoretical Methods in Physics, Northumbria University
(U.K.), 26-30th July 201
(1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
All Lie bialgebra structures for the (1+1)-dimensional centrally extended
Schrodinger algebra are explicitly derived and proved to be of the coboundary
type. Therefore, since all of them come from a classical r-matrix, the complete
family of Schrodinger Poisson-Lie groups can be deduced by means of the
Sklyanin bracket. All possible embeddings of the harmonic oscillator, extended
Galilei and gl(2) Lie bialgebras within the Schrodinger classification are
studied. As an application, new quantum (Hopf algebra) deformations of the
Schrodinger algebra, including their corresponding quantum universal
R-matrices, are constructed.Comment: 25 pages, LaTeX. Possible applications in relation with integrable
systems are pointed; new references adde
Integrable geodesic motion on 3D curved spaces from non-standard quantum deformations
The link between 3D spaces with (in general, non-constant) curvature and
quantum deformations is presented. It is shown how the non-standard deformation
of a sl(2) Poisson coalgebra generates a family of integrable Hamiltonians that
represent geodesic motions on 3D manifolds with a non-constant curvature that
turns out to be a function of the deformation parameter z. A different
Hamiltonian defined on the same deformed coalgebra is also shown to generate a
maximally superintegrable geodesic motion on 3D Riemannian and (2+1)D
relativistic spaces whose sectional curvatures are all constant and equal to z.
This approach can be generalized to arbitrary dimension.Comment: 7 pages. Communication presented at the 14th Int. Colloquium on
Integrable Systems 14-16 June 2005, Prague, Czech Republi
Quantum (1+1) extended Galilei algebras: from Lie bialgebras to quantum R-matrices and integrable systems
The Lie bialgebras of the (1+1) extended Galilei algebra are obtained and
classified into four multiparametric families. Their quantum deformations are
obtained, together with the corresponding deformed Casimir operators. For the
coboundary cases quantum universal R-matrices are also given. Applications of
the quantum extended Galilei algebras to classical integrable systems are
explicitly developed.Comment: 16 pages, LaTeX. A detailed description of the construction of
integrable systems is carried ou
Bases in Lie and Quantum Algebras
Applications of algebras in physics are related to the connection of
measurable observables to relevant elements of the algebras, usually the
generators. However, in the determination of the generators in Lie algebras
there is place for some arbitrary conventions. The situation is much more
involved in the context of quantum algebras, where inside the quantum universal
enveloping algebra, we have not enough primitive elements that allow for a
privileged set of generators and all basic sets are equivalent. In this paper
we discuss how the Drinfeld double structure underlying every simple Lie
bialgebra characterizes uniquely a particular basis without any freedom,
completing the Cartan program on simple algebras. By means of a perturbative
construction, a distinguished deformed basis (we call it the analytical basis)
is obtained for every quantum group as the analytical prolongation of the above
defined Lie basis of the corresponding Lie bialgebra. It turns out that the
whole construction is unique, so to each quantum universal enveloping algebra
is associated one and only one bialgebra. In this way the problem of the
classification of quantum algebras is moved to the classification of
bialgebras. In order to make this procedure more clear, we discuss in detail
the simple cases of su(2) and su_q(2).Comment: 16 pages, Proceedings of the 5th International Symposium on Quantum
Theory and Symmetries QTS5 (July 22-28, 2007, Valladolid (Spain)
Classical Dynamical Systems from q-algebras:"cluster" variables and explicit solutions
A general procedure to get the explicit solution of the equations of motion
for N-body classical Hamiltonian systems equipped with coalgebra symmetry is
introduced by defining a set of appropriate collective variables which are
based on the iterations of the coproduct map on the generators of the algebra.
In this way several examples of N-body dynamical systems obtained from
q-Poisson algebras are explicitly solved: the q-deformed version of the sl(2)
Calogero-Gaudin system (q-CG), a q-Poincare' Gaudin system and a system of
Ruijsenaars type arising from the same (non co-boundary) q-deformation of the
(1+1) Poincare' algebra. Also, a unified interpretation of all these systems as
different Poisson-Lie dynamics on the same three dimensional solvable Lie group
is given.Comment: 19 Latex pages, No figure
Quantum two-photon algebra from non-standard U_z(sl(2,R)) and a discrete time Schr\"odinger equation
The non-standard quantum deformation of the (trivially) extended sl(2,R)
algebra is used to construct a new quantum deformation of the two-photon
algebra h_6 and its associated quantum universal R-matrix. A deformed one-boson
representation for this algebra is deduced and applied to construct a first
order deformation of the differential equation that generates the two-photon
algebra eigenstates in Quantum Optics. On the other hand, the isomorphism
between h_6 and the (1+1) Schr\"odinger algebra leads to a new quantum
deformation for the latter for which a differential-difference realization is
presented. From it, a time discretization of the heat-Schr\"odinger equation is
obtained and the quantum Schr\"odinger generators are shown to be symmetry
operators.Comment: 12 pages, LaTe
Non-coboundary Poisson-Lie structures on the book group
All possible Poisson-Lie (PL) structures on the 3D real Lie group generated
by a dilation and two commuting translations are obtained. Its classification
is fully performed by relating these PL groups with the corresponding Lie
bialgebra structures on the corresponding "book" Lie algebra. By construction,
all these Poisson structures are quadratic Poisson-Hopf algebras for which the
group multiplication is a Poisson map. In contrast to the case of simple Lie
groups, it turns out that most of the PL structures on the book group are
non-coboundary ones. Moreover, from the viewpoint of Poisson dynamics, the most
interesting PL book structures are just some of these non-coboundaries, which
are explicitly analysed. In particular, we show that the two different
q-deformed Poisson versions of the sl(2,R) algebra appear as two distinguished
cases in this classification, as well as the quadratic Poisson structure that
underlies the integrability of a large class of 3D Lotka-Volterra equations.
Finally, the quantization problem for these PL groups is sketched.Comment: 15 pages, revised version, some references adde
A Jordanian quantum two-photon/Schrodinger algebra
A non-standard quantum deformation of the two-photon algebra is
constructed, and its quantum universal R-matrix is given. Representations of
this new quantum algebra are studied on the Fock space and translated into
Fock-Bargmann realizations that provide a direct formalism for the definition
of deformed states of light. Finally, the isomorphism between and the
(1+1) Schr\"odinger algebra is used to introduce a new (non-standard) Hopf
algebra deformation of this latter symmetry algebra.Comment: 12 pages, LaTeX, misprints correcte
Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature
An infinite family of classical superintegrable Hamiltonians defined on the
N-dimensional spherical, Euclidean and hyperbolic spaces are shown to have a
common set of (2N-3) functionally independent constants of the motion. Among
them, two different subsets of N integrals in involution (including the
Hamiltonian) can always be explicitly identified. As particular cases, we
recover in a straightforward way most of the superintegrability properties of
the Smorodinsky-Winternitz and generalized Kepler-Coulomb systems on spaces of
constant curvature and we introduce as well new classes of (quasi-maximally)
superintegrable potentials on these spaces. Results here presented are a
consequence of the sl(2) Poisson coalgebra symmetry of all the Hamiltonians,
together with an appropriate use of the phase spaces associated to Poincare and
Beltrami coordinates.Comment: 12 page
- …