121 research outputs found
Slow surface wave damping in plasmas with anisotropic viscosity and thermal conductivity
This paper studies the damping of slow surface MHD waves propagating along the equilibrium magnetic field on a finite-thickness magnetic interface. The plasma is assumed to be strongly magnetised, and the full Braginskii's expressions for viscosity and the heat flux are used. The primary focus of the paper is on the competition between resonant absorption in the thin dissipative layer embracing the ideal resonant position and the bulk wave damping due to viscosity and thermal conductivity as damping mechanisms for surface MHD waves. The dependence of the wave damping decrement on the wave length and the dissipative coefficients is studied. Application of the obtained results to the surface MHD wave damping in the solar chromosphere is discussed
Determination of 3D Trajectories of Knots in Solar Prominences Using MSDP Data
In this paper we present a new method of restoration of the true
thee-dimensional trajectories of the prominence knots based on ground-based
observations taken with a single telescope, which is equipped with a
Multi-Channel Subtractive Double Pass imaging spectrograph. Our method allows
to evaluate true three-dimensional trajectories of the prominence knots without
any assumptions concerning the shape of the trajectories or dynamics of the
motion. The reconstructed trajectories of several knots observed in three
prominences are presented.Comment: 14 pages, 9 figures, accepted for publication in Solar Physic
Damping mechanisms for oscillations in solar prominences
Small amplitude oscillations are a commonly observed feature in
prominences/filaments. These oscillations appear to be of local nature, are
associated to the fine structure of prominence plasmas, and simultaneous flows
and counterflows are also present. The existing observational evidence reveals
that small amplitude oscillations, after excited, are damped in short spatial
and temporal scales by some as yet not well determined physical mechanism(s).
Commonly, these oscillations have been interpreted in terms of linear
magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping
mechanisms that have been recently put forward in order to explain the observed
attenuation scales. These mechanisms include thermal effects, through
non-adiabatic processes, mass flows, resonant damping in non-uniform media, and
partial ionization effects. The relevance of each mechanism is assessed by
comparing the spatial and time scales produced by each of them with those
obtained from observations. Also, the application of the latest theoretical
results to perform prominence seismology is discussed, aiming to determine
physical parameters in prominence plasmas that are difficult to measure by
direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted
Estimation of solar prominence magnetic fields based on the reconstructed 3D trajectories of prominence knots
We present an estimation of the lower limits of local magnetic fields in
quiescent, activated, and active (surges) promineces, based on reconstructed
3-dimensional (3D) trajectories of individual prominence knots. The 3D
trajectories, velocities, tangential and centripetal accelerations of the knots
were reconstructed using observational data collected with a single
ground-based telescope equipped with a Multi-channel Subtractive Double Pass
imaging spectrograph. Lower limits of magnetic fields channeling observed
plasma flows were estimated under assumption of the equipartition principle.
Assuming approximate electron densities of the plasma n_e = 5*10^{11} cm^{-3}
in surges and n_e = 5*10^{10} cm^{-3} in quiescent/activated prominences, we
found that the magnetic fields channeling two observed surges range from 16 to
40 Gauss, while in quiescent and activated prominences they were less than 10
Gauss. Our results are consistent with previous detections of weak local
magnetic fields in the solar prominences.Comment: 14 pages, 12 figures, 1 tabl
Comparative Analysis of Super-Kamiokande and SNO Solar-Neutrino Data and the Photospheric Magnetic Field
We analyze Super-Kamiokande, SNO, and photospheric magnetic-field data for
the common time interval, namely the SNO D2O phase. Concerning rotational
modulation, the magnetic-field power spectrum shows the strongest peaks at the
second and sixth harmonics of the solar synodic rotation frequency [3 nu(rot)
and 7 nu(rot)]. The restricted Super-Kamiokande dataset shows strong modulation
at the second harmonic. The SNO D2O dataset shows weak modulation at that
frequency, but strong modulation in the sixth-harmonic frequency band. We
estimate the significance level of the correspondence of the Super-Kamiokande
second-harmonic peak with the corresponding magnetic-field peak to be 0.0004,
and the significance level of the correspondence of the SNO D2O sixth-harmonic
peak with the corresponding magnetic-field peak to be 0.009. By estimating the
amplitude of the modulation of the solar neutrino flux at the second harmonic
from the restricted Super-Kamiokande dataset, we find that the weak power at
that frequency in the SNO D2O power spectrum is not particularly surprising.
Concerning 9.43 yr-1, we find no peak at this frequency in the power spectrum
formed from the restricted Super-Kamiokande dataset, so it is no surprise that
this peak does not show up in the SNO D2O dataset, either.Comment: 32 pages, 8 tables, 16 figure
Search for Short-Term Periodicities in the Sun's Surface Rotation: A Revisit
The power spectral analyses of the Sun's surface equatorial rotation rate
determined from the Mt. Wilson daily Doppler velocity measurements during the
period 3 December 1985 to 5 March 2007 suggests the existence of 7.6 year, 2.8
year, 1.47 year, 245 day, 182 day and 158 day periodicities in the surface
equatorial rotation rate during the period before 1996.
However, there is no variation of any kind in the more accurately measured
data during the period after 1995. That is, the aforementioned periodicities in
the data during the period before the year 1996 may be artifacts of the
uncertainties of those data due to the frequent changes in the instrumentation
of the Mt. Wilson spectrograph. On the other hand, the temporal behavior of
most of the activity phenomena during cycles 22 (1986-1996) and 23 (after 1997)
is considerably different. Therefore, the presence of the aforementioned
short-term periodicities during the last cycle and absence of them in the
current cycle may, in principle, be real temporal behavior of the solar
rotation during these cycles.Comment: 11 pages, 6 figures, accepted for publication in Solar Physic
Photospheric Magnetic Field: Relationship Between North-South Asymmetry and Flux Imbalance
Photospheric magnetic fields were studied using the Kitt Peak synoptic maps
for 1976-2003. Only strong magnetic fields (B>100 G) of the equatorial region
were taken into account. The north-south asymmetry of the magnetic fluxes was
considered as well as the imbalance between positive and negative fluxes. The
north-south asymmetry displays a regular alternation of the dominant hemisphere
during the solar cycle: the northern hemisphere dominated in the ascending
phase, the southern one in the descending phase during Solar Cycles 21-23. The
sign of the imbalance did not change during the 11 years from one polar-field
reversal to the next and always coincided with the sign of the Sun's polar
magnetic field in the northern hemisphere. The dominant sign of leading
sunspots in one of the hemispheres determines the sign of the magnetic-flux
imbalance. The sign of the north-south asymmetry of the magnetic fluxes and the
sign of the imbalance of the positive and the negative fluxes are related to
the quarter of the 22-year magnetic cycle where the magnetic configuration of
the Sun remains constant (from the minimum where the sunspot sign changes
according to Hale's law to the magnetic-field reversal and from the reversal to
the minimum). The sign of the north-south asymmetry for the time interval
considered was determined by the phase of the 11-year cycle (before or after
the reversal); the sign of the imbalance of the positive and the negative
fluxes depends on both the phase of the 11-year cycle and on the parity of the
solar cycle. The results obtained demonstrate the connection of the magnetic
fields in active regions with the Sun's polar magnetic field in the northern
hemisphere.Comment: 24 pages, 12 figures, 2 table
Predicting the Amplitude of a Solar Cycle Using the North-South Asymmetry in the Previous Cycle: II. An Improved Prediction for Solar Cycle~24
Recently, using Greenwich and Solar Optical Observing Network sunspot group
data during the period 1874-2006, (Javaraiah, MNRAS, 377, L34, 2007: Paper I),
has found that: (1) the sum of the areas of the sunspot groups in 0-10 deg
latitude interval of the Sun's northern hemisphere and in the time-interval of
-1.35 year to +2.15 year from the time of the preceding minimum of a solar
cycle n correlates well (corr. coeff. r=0.947) with the amplitude (maximum of
the smoothed monthly sunspot number) of the next cycle n+1. (2) The sum of the
areas of the spot groups in 0-10 deg latitude interval of the southern
hemisphere and in the time-interval of 1.0 year to 1.75 year just after the
time of the maximum of the cycle n correlates very well (r=0.966) with the
amplitude of cycle n+1. Using these relations, (1) and (2), the values 112 + or
- 13 and 74 + or -10, respectively, were predicted in Paper I for the amplitude
of the upcoming cycle 24. Here we found that in case of (1), the north-south
asymmetry in the area sum of a cycle n also has a relationship, say (3), with
the amplitude of cycle n+1, which is similar to (1) but more statistically
significant (r=0.968) like (2). By using (3) it is possible to predict the
amplitude of a cycle with a better accuracy by about 13 years in advance, and
we get 103 + or -10 for the amplitude of the upcoming cycle 24. However, we
found a similar but a more statistically significant (r=0.983) relationship,
say (4), by using the sum of the area sum used in (2) and the north-south
difference used in (3). By using (4) it is possible to predict the amplitude of
a cycle by about 9 years in advance with a high accuracy and we get 87 + or - 7
for the amplitude of cycle 24.Comment: 21 pages, 7 figures, Published in Solar Physics 252, 419-439 (2008
Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector
[EN] New detector approaches in Positron Emission Tomography imaging will play an important role in reducing costs, lowering administered radiation doses, and improving overall performance. PETALO employs liquid xenon as the active scintillating medium and UV-sensitive silicon photomultipliers for scintillation readout. The scintillation time in liquid xenon is fast enough to register time-of-flight information for each detected coincidence, and sufficient scintillation is produced with low enough fluctuations to obtain good energy resolution. The present simulation study examines a full-body-sized PETALO detector and evaluates its potential performance in PET image reconstruction.This work was supported by the European Research Council under grant ID 757829 and by Ministerio de Economia y Competitividad for grant FPA2016-78595-C3-1-R.Renner, J.; Romo-Luque, C.; Aliaga, RJ.; Álvarez-Puerta, V.; Ballester Merelo, FJ.; Benlloch-Rodríguez, J.; Carrión, J.... (2022). Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector. Journal of Instrumentation. 17(5):1-14. https://doi.org/10.1088/1748-0221/17/05/P0504411417
- …