583 research outputs found
Recommended from our members
Integrated plan for LArTPC neutrino detectors in the US
We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in 2014
Recommended from our members
DRCELL: A software package for drift chamber cell design
Designing a drift chamber cell geometry which optimizes resolution and two track separation is not a straightforward task. This paper describes a software package which helps visualize the behavior of drifting electrons within the cell under the influence of electric and magnetic fields. Histograms of chamber pulse shapes and arrival times may be generated. In addition, a calculation of the gas gain is performed. The package presently uses drift velocity, drift angle, gain, and dE/dx parameterizations for 50:50 argon/endash/ethane but modifications may be easily made for other gas mixtures. The model is straightforward and relies on an analytical form for the electric potential of an infinite series of wires. The electric field is calculated numerically in a small region surrounding any point of interest. In the absence of a magnetic field, the drift direction of an ionization electron is the unit vector along the E field direction. When a perpendicular magnetic field is present, the drift direction is rotated by the Lorentz angle, a. 3 refs., 2 figs., 1 tab
Integrated plan for LArTPC neutrino detectors in the US
We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in 2014
Horizontal band-saw
The effect of various parameters on the performance of the band saw
when cutting mild steel-with a 10 t.p.i. raker-set blade were established
over a limited range. These are discussed fully in the ‘conclusions'.
With this limited survey it was not found possible to establish the optimum
conditions of operation
Analysis of a Large Sample of Neutrino-Induced Muons with the ArgoNeuT Detector
ArgoNeuT, or Argon Neutrino Test, is a 170 liter liquid argon time projection
chamber designed to collect neutrino interactions from the NuMI beam at Fermi
National Accelerator Laboratory. ArgoNeuT operated in the NuMI low-energy beam
line directly upstream of the MINOS Near Detector from September 2009 to
February 2010, during which thousands of neutrino and antineutrino events were
collected. The MINOS Near Detector was used to measure muons downstream of
ArgoNeuT. Though ArgoNeuT is primarily an R&D project, the data collected
provide a unique opportunity to measure neutrino cross sections in the 0.1-10
GeV energy range. Fully reconstructing the muon from these interactions is
imperative for these measurements. This paper focuses on the complete kinematic
reconstruction of neutrino-induced through-going muons tracks. Analysis of this
high statistics sample of minimum ionizing tracks demonstrates the reliability
of the geometric and calorimetric reconstruction in the ArgoNeuT detector
- …