109 research outputs found

    Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons

    Full text link
    Continental crust forms from, and thus chemically depletes, the Earth's mantle. Evidence that the Earth's mantle was already chemically depleted by melting before the formation of today's oldest surviving crust has been presented in the form of Sm-Nd isotope studies of 3.8-4.0 billion years old rocks from Greenland(1-5) and Canada(5-7). But this interpretation has been questioned because of the possibility that subsequent perturbations may have re-equilibrated the neodymium-isotope compositions of these rocks(8). Independent and more robust evidence for the origin of the earliest crust and depletion of the Archaean mantle can potentially be provided by hafnium-isotope compositions of zircon, a mineral whose age can be precisely determined by U-Pb dating, and which can survive metamorphisms(4). But the amounts of hafnium in single zircon grains are too small for the isotopic composition to be precisely analysed by conventional methods. Here we report hafnium-isotope data, obtained using the new technique of multiple-collector plasma-source mass spectrometry(9), for 37 individual grains of the oldest known terrestrial zircons (from the Narryer Gneiss Complex, Australia, with U-Pb ages of up to 4.14 Gyr (refs 10-13)). We find that none of the grains has a depleted mantle signature, but that many were derived from a source with a hafnium-isotope composition similar to that of chondritic meteorites. Furthermore, more than half of the analysed grains seem to have formed by remelting of significantly older crust, indicating that crustal preservation and subsequent reworking might have been important processes from earliest times.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62681/1/399252a0.pd

    Mantle heat drives hydrothermal fluids responsible for carbonate-hosted base metal deposits: evidence from 3He/4He of ore fluids in the Irish Pb-Zn ore district

    Get PDF
    There is little consensus on whether carbonate-hosted base metal deposits, such as the world-class Irish Zn+Pb ore field, formed in collisional or extensional tectonic settings. Helium isotopes have been analysed in ore fluids trapped in sulphides samples from the major base metal deposits of the Irish Zn-Pb ore field in order to quantify the involvement of mantle-derived volatiles, that require melting to be realised, as well as test prevailing models for the genesis of the ore fields. 3He/4He ratios range up to 0.2 Ra, indicating that a small but clear mantle helium contribution is present in the mineralising fluids trapped in galena and marcasite. Sulfides from ore deposits with the highest fluid inclusion temperatures (~200°C) also have the highest 3He/4He (> 0.15 Ra). Similar 3He/4He are recorded in fluids from modern continental regions that are undergoing active extension. By analogy we consider that the hydrothermal fluids responsible for the carbonate-hosted Irish base metal mineralization circulated in thinned continental crust, undergoing extension, and demonstrates that enhanced mantle heat flow is ultimately responsible for driving fluid convection

    Noble Gases

    No full text

    Noble Gases

    No full text
    • …
    corecore