35 research outputs found
The N276 glycosylation site is required for HIV-1 neutralization by the CD4 binding site specific HJ16 monoclonal antibody
Immunogen design for HIV-1 vaccines could be based on epitope identification of naturally occurring neutralizing antibodies in infected patients. A tier 2 neutralizing monoclonal antibody (mAb), HJ16 recognizes a new epitope in the CD4 binding site (CD4bs) region that only partially overlaps with the b12 epitope. We aimed to identify the critical binding site by resistance induction in a sensitive primary CRF02_AG strain. In four independent dose-escalation studies, the N276D mutation was consistently the only alteration found and it was confirmed to be responsible for resistance to HJ16 by sitedirected mutagenesis in envelopes (envs) of the homologous CRF02_AG, as well as of a subtype A and a subtype C primary isolate. This mutation removes an N-linked glycosylation site. The effect of N276D was very selective, as it failed to confer resistance to a range of other entry inhibitors. Remarkably, sensitivity to the CD4bs VRC01 and VRC03 mAbs was increased in the N276D mutated viruses. These data indicate that binding of the CD4bs specific HJ16 mAb critically depends on the interaction with the N276-glycan, thus indicating that HJ16 is the first glycan dependent CD4bs-specific mAb
Characterization of neutralizing profiles in HIV-1 infected patients from whom the HJ16, HGN194 and HK20 mAbs were obtained
Several new human monoclonal antibodies (mAbs) with a neutralizing potential across different subtypes have recently been described. Three mAbs, HJ16, HGN194 and HK20, were obtained from patients within the HIV-1 cohort of the Institute of Tropical Medicine (ITM). Our aim was to generate immunization antibodies equivalent to those seen in plasma. Here, we describe the selection and characterization of patient plasma and their mAbs, using a range of neutralization assays, including several peripheral blood mononuclear cell (PBMC) based assays and replicating primary viruses as well as cell line based assays and pseudoviruses (PV). The principal criterion for selection of patient plasma was the activity in an ‘extended incubation phase’ PBMC assay. Neutralizing Abs, derived from their memory B cells, were then selected by ELISA with envelope proteins as solid phase. MAbs were subsequently tested in a high-throughput HOS-PV assay to assess functional neutralization. The present study indicates that the strong profiles in the patients' plasma were not solely due to antibodies represented by the newly isolated mAbs. Although results from the various assays were divergent, they by and large indicate that neutralizing Abs to other epitopes of the HIV-1 envelope are present in the plasma and synergy between Abs may be important. Thus, the spectrum of the obtained mAbs does not cover the range of cross-reactivity seen in plasma in these carefully selected patients irrespective of which neutralization assay is used. Nevertheless, these mAbs are relevant for immunogen discovery because they bind to the recombinant glycoproteins to which the immune response needs to be targeted in vivo. Our observations illustrate the remaining challenges required for successful immunogen design and development
T cells, more than antibodies, may prevent symptoms developing from respiratory syncytial virus infections in older adults.
INTRODUCTION: The immune mechanisms supporting partial protection from reinfection and disease by the respiratory syncytial virus (RSV) have not been fully characterized. In older adults, symptoms are typically mild but can be serious in patients with comorbidities when the infection extends to the lower respiratory tract. METHODS: This study formed part of the RESCEU older-adults prospective-cohort study in Northern Europe (2017-2019; NCT03621930) in which a thousand participants were followed over an RSV season. Peripheral-blood samples (taken pre-season, post-season, during illness and convalescence) were analyzed from participants who (i) had a symptomatic acute respiratory tract infection by RSV (RSV-ARTI; N=35) or (ii) asymptomatic RSV infection (RSV-Asymptomatic; N=16). These analyses included evaluations of antibody (Fc-mediated-) functional features and cell-mediated immunity, in which univariate and machine-learning (ML) models were used to explore differences between groups. RESULTS: Pre-RSV-season peripheral-blood biomarkers were predictive of symptomatic RSV infection. T-cell data were more predictive than functional antibody data (area under receiver operating characteristic curve [AUROC] for the models were 99% and 76%, respectively). The pre-RSV season T-cell phenotypes which were selected by the ML modelling and which were more frequent in RSV-Asymptomatic group than in the RSV-ARTI group, coincided with prominent phenotypes identified during convalescence from RSV-ARTI (e.g., IFN-γ+, TNF-α+ and CD40L+ for CD4+, and IFN-γ+ and 4-1BB+ for CD8+). CONCLUSION: The evaluation and statistical modelling of numerous immunological parameters over the RSV season suggests a primary role of cellular immunity in preventing symptomatic RSV infections in older adults
Analysis of Memory B Cell Responses and Isolation of Novel Monoclonal Antibodies with Neutralizing Breadth from HIV-1-Infected Individuals
BACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design
Therapeutic DNA vaccination of vertically HIV-infected children: Report of the first pediatric randomised trial (PEDVAC)
Subjects: Twenty vertically HIV-infected children, 6–16 years of age, with stable viral load control and CD4+ values above 400 cells/mm³.
Intervention: Ten subjects continued their ongoing antiretroviral treatment (ART, Group A) and 10 were immunized with a HIV-DNA vaccine in addition to their previous therapy (ART and vaccine, Group B). The genetic vaccine represented HIV-1 subtypes A, B and C, encoded Env, Rev, Gag and RT and had no additional adjuvant. Immunizations took place at weeks 0, 4 and 12, with a boosting dose at week 36. Monitoring was performed until week 60 and extended to week 96.
Results: Safety data showed good tolerance of the vaccine. Adherence to ART remained high and persistent during the study and did not differ significantly between controls and vaccinees. Neither group experienced either virological failure or a decline of CD4+ counts from baseline. Higher HIV-specific cellular immune responses were noted transiently to Gag but not to other components of the vaccine. Lymphoproliferative responses to a virion antigen HIV-1 MN were higher in the vaccinees than in the controls (p = 0.047), whereas differences in reactivity to clade-specific Gag p24, RT or Env did not reach significance. Compared to baseline, the percentage of HIV-specific CD8+ lymphocytes releasing perforin in the Group B was higher after the vaccination schedule had been completed (p = 0.031). No increased CD8+ perforin levels were observed in control Group A.
Conclusions: The present study demonstrates the feasibility, safety and moderate immunogenicity of genetic vaccination in vertically HIV-infected children, paving the way for amplified immunotherapeutic approaches in the pediatric population.
Trial registration: clinicaltrialsregister.eu 2007-002359-18; 2007-002359-18/I
Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals
Background The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. Methods and Findings We immortalized IgG+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. Conclusions This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design
Characterization of Neutralizing Profiles in HIV-1 Infected Patients from whom the HJ16, HGN194 and HK20 mAbs were Obtained
Several new human monoclonal antibodies (mAbs) with a neutralizing potential across different subtypes have recently been described. Three mAbs, HJ16, HGN194 and HK20, were obtained from patients within the HIV-1 cohort of the Institute of Tropical Medicine (ITM). Our aim was to generate immunization antibodies equivalent to those seen in plasma. Here, we describe the selection and characterization of patient plasma and their mAbs, using a range of neutralization assays, including several peripheral blood mononuclear cell (PBMC) based assays and replicating primary viruses as well as cell line based assays and pseudoviruses (PV). The principal criterion for selection of patient plasma was the activity in an ‘extended incubation phase’ PBMC assay. Neutralizing Abs, derived from their memory B cells, were then selected by ELISA with envelope proteins as solid phase. MAbs were subsequently tested in a high-throughput HOS-PV assay to assess functional neutralization. The present study indicates that the strong profiles in the patients' plasma were not solely due to antibodies represented by the newly isolated mAbs. Although results from the various assays were divergent, they by and large indicate that neutralizing Abs to other epitopes of the HIV-1 envelope are present in the plasma and synergy between Abs may be important. Thus, the spectrum of the obtained mAbs does not cover the range of cross-reactivity seen in plasma in these carefully selected patients irrespective of which neutralization assay is used. Nevertheless, these mAbs are relevant for immunogen discovery because they bind to the recombinant glycoproteins to which the immune response needs to be targeted in vivo. Our observations illustrate the remaining challenges required for successful immunogen design and development
HLA Alleles Associated with Slow Progression to AIDS Truly Prefer to Present HIV-1 p24
Background: The mechanism behind the association between human leukocyte antigen (HLA) molecules and the rate of HIV-1
disease progression is still poorly understood. Recent data suggest that ‘‘protective’’ HLA molecules, i.e. those associated with
a low HIV-1 viral load and relatively slow disease progression, tend to present epitopes from the Gag capsid protein. Although
this suggests that preferential targeting of Gag delays disease progression, the apparent preference for Gag could also be
a side-effect of the relatively high immunogenicity of the protein. Methods and Findings: To separate cause and effect, we
predicted HIV-1 epitopes from the whole genome of HIV-1, and found that protective HLA alleles have a true preference for the
p24 Gag protein, while non-protective HLA alleles preferentially target HIV-1 Nef. In line with this, we found a significant
negative correlation between the predicted affinity of the best-binding p24 epitopes and the relative hazard of HIV-1 disease
progression for a large number of HLA molecules. When the epitopes targeted by protective HLA alleles were mapped to the
known p24 structure, we found that mutations in these epitopes are likely to disturb the p24 dimer structure, which is
expected to severely reduce the fitness of the virus. Conclusions: Our results suggest that the intrinsic preference of different
HLA molecules to present p24 peptides explains why some HLA molecules are more protective than others
HIV-1 superinfection results in broad polyclonal neutralizing antibodies
<div><p>HIV-1 vaccines designed to date have failed to elicit neutralizing antibodies (Nabs) that are capable of protecting against globally diverse HIV-1 subtypes. One relevant setting to study the development of a strong, cross-reactive Nab response is HIV-1 superinfection (SI), defined as sequential infections from different source partners. SI has previously been shown to lead to a broader and more potent Nab response when compared to single infection, but it is unclear whether SI also impacts epitope specificity and if the epitopes targeted after SI differ from those targeted after single infection. Here the post-SI Nab responses were examined from 21 Kenyan women collectively exposed to subtypes A, C, and D and superinfected after a median time of ~1.07 years following initial infection. Plasma samples chosen for analysis were collected at a median time point ~2.72 years post-SI. Because previous studies of singly infected populations with broad and potent Nab responses have shown that the majority of their neutralizing activity can be mapped to 4 main epitopes on the HIV-1 Envelope, we focused on these targets, which include the CD4-binding site, a V1/V2 glycan, the N332 supersite in V3, and the membrane proximal external region of gp41. Using standard epitope mapping techniques that were applied to the previous cohorts, the present study demonstrates that SI did not induce a dominant Nab response to any one of these epitopes in the 21 women. Computational sera delineation analyses also suggested that 20 of the 21 superinfected women’s Nab responses could not be ascribed a single specificity with high confidence. These data are consistent with a model in which SI with diverse subtypes promotes the development of a broad polyclonal Nab response, and thus would provide support for vaccine designs using multivalent HIV immunogens to elicit a diverse repertoire of Nabs.</p></div
Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes.
Identifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257) whose plasma neutralized 84% of heterologous viruses. In this study we showed that
breadth in CAP257 was largely due to the sequential, transient ppearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely
by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost
entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies