33,261 research outputs found

    B->gamma e nu Transitions from QCD Sum Rules

    Full text link
    B->gamma e nu transitions have recently been studied in the framework of QCD factorization. The attractiveness of this channel for such an analysis lies in the fact that, at least in the heavy quark limit, the only hadron involved is the B meson itself, so one expects a very simple description of the form factor in terms of a convolution of the B meson distribution amplitude with a perturbative kernel. This description, however, does not include contributions suppressed by powers of the b quark mass. In this letter, we calculate corrections to the factorized expression which are induced by the ``soft'' hadronic component of the photon. We demonstrate that the power-suppression of these terms is numerically not effective for physical values of the bb quark mass and that they increase the form factor by about 30% at zero momentum transfer. We also derive a sum rule for lambda_B, the first negative moment of the B meson distribution amplitude, and find lambda_B = 0.6 GeV (to leading order in QCD).Comment: 13 pages, 5 figure

    Incompatible sets of gradients and metastability

    Full text link
    We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L1L^1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiment and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.Comment: Archive for Rational Mechanics and Analysis, to appea

    Preliminary Test of Prescribed Burning for Control of Maple Leaf Cutter (Lepidoptera: Incurvariidae)

    Get PDF
    Leaf litter burning in the spring resulted in 87.5% mortality of maple leaf cutter pupae, Paraclemensia acerifoliella (Fitch). No apparent damage was observed on sugar maple or beech trees within the burn area

    Heavy to Light Meson Exclusive Semileptonic Decays in Effective Field Theory of Heavy Quark

    Full text link
    We present a general study on exclusive semileptonic decays of heavy (B, D, B_s) to light (pi, rho, K, K^*) mesons in the framework of effective field theory of heavy quark. Transition matrix elements of these decays can be systematically characterized by a set of wave functions which are independent of the heavy quark mass except for the implicit scale dependence. Form factors for all these decays are calculated consistently within the effective theory framework using the light cone sum rule method at the leading order of 1/m_Q expansion. The branching ratios of these decays are evaluated, and the heavy and light flavor symmetry breaking effects are investigated. We also give comparison of our results and the predictions from other approaches, among which are the relations proposed recently in the framework of large energy effective theory.Comment: 18 pages, ReVtex, 5 figures, added references and comparison of results, and corrected signs in some formula

    Exploiting entanglement in communication channels with correlated noise

    Full text link
    We develop a model for a noisy communication channel in which the noise affecting consecutive transmissions is correlated. This model is motivated by fluctuating birefringence of fiber optic links. We analyze the role of entanglement of the input states in optimizing the classical capacity of such a channel. Assuming a general form of an ensemble for two consecutive transmissions, we derive tight bounds on the classical channel capacity depending on whether the input states used for communication are separable or entangled across different temporal slots. This result demonstrates that by an appropriate choice, the channel capacity may be notably enhanced by exploiting entanglement.Comment: 9 pages, 5 figure
    corecore