159 research outputs found

    Mesenchymal Stem Cell Therapy for Aging Frailty

    Get PDF
    Chronic diseases and degenerative conditions are strongly linked with the geriatric syndrome of frailty and account for a disproportionate percentage of the health care budget. Frailty increases the risk of falls, hospitalization, institutionalization, disability, and death. By definition, frailty syndrome is characterized by declines in lean body mass, strength, endurance, balance, gait speed, activity and energy levels, and organ physiologic reserve. Collectively, these changes lead to the loss of homeostasis and capability to withstand stressors and resulting vulnerabilities. There is a strong link between frailty, inflammation, and the impaired ability to repair tissue injury due to decreases in endogenous stem cell production. Although exercise and nutritional supplementation provide benefit to frail patients, there are currently no specific therapies for frailty. Bone marrow-derived allogeneic mesenchymal stem cells (MSCs) provide therapeutic benefits in heart failure patients irrespective of age. MSCs contribute to cellular repair and tissue regeneration through their multilineage differentiation capacity, immunomodulatory, and anti-inflammatory effects, homing and migratory capacity to injury sites, and stimulatory effect on endogenous tissue progenitors. The advantages of using MSCs as a therapeutic strategy include standardization of isolation and culture expansion techniques and safety in allogeneic transplantation. Based on this evidence, we performed a randomized, double-blinded, dose-finding study in elderly, frail individuals and showed that intravenously delivered allogeneic MSCs are safe and produce significant improvements in physical performance measures and inflammatory biomarkers. We thus propose that frailty can be treated and the link between frailty and chronic inflammation offers a potential therapeutic target, addressable by cell therapy

    Allogeneic Mesenchymal Stem Cells as a Treatment for Aging Frailty

    Get PDF
    As life expectancy is projected to increase in the ensuing decades, individuals of older age continue to exceed the previous generation’s lifespan. Advancing age is associated with a reduction in physical and mental functional capacity, and chronic inflammation is a major factor contributing to this decline. A heightened inflammatory state can lead to exhaustion, weakness, weight loss, slow gate speed, and an overall decrease in activity level. These phenotypes define the onset of the disease process known as frailty. Frailty is a growing epidemic, which severely undermines a person’s ability to deal with outside stressors, and increases their rate of hospitalization, institutionalization, and mortality. Current interventions focus on preventative care by improving exercise capacity, strength, nutritional supplementation, diet, and mobility. However, a biological cure has heretofore remained elusive. Here, we introduce the novel therapeutic principle that mesenchymal stem cell (MSC) therapy may represent a safe, practical, and efficacious both the treatment and prevention of frailty in individuals of advancing age. To date, a phase I safety trial reveals an excellent safety profile and suggests that mesenchymal stem cells can ameliorate signs and symptoms of frailty. These early studies lay the groundwork for future large-scale clinical trials of this exciting and novel therapeutic concept that has the potential to expand health span in the aging population

    Effect of Aging on Human Mesenchymal Stem Cell Therapy in Ischemic Cardiomyopathy Patients

    Get PDF
    AbstractBackgroundThe role of patient age in the efficacy of mesenchymal stem cell (MSC) therapy in ischemic cardiomyopathy (ICM) is controversial.ObjectivesThis study sought to determine whether the therapeutic effect of culture-expanded MSCs persists, even in older subjects.MethodsPatients with ICM who received MSCs via transendocardial stem cell injection (TESI) as part of the TAC-HFT (Transendocardial Autologous Cells in Ischemic Heart Failure) (n = 19) and POSEIDON (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis) (n = 30) clinical trials were divided into 2 age groups: younger than 60 and 60 years of age and older. Functional capacity was measured by 6-min walk distance (6MWD) and quality of life using the Minnesota Living With Heart Failure Questionnaire (MLHFQ) score, measured at baseline, 6 months, and 1 year post-TESI. Various cardiac imaging parameters, including absolute scar size, were compared at baseline and 1 year post-TESI.ResultsThe mean 6MWD was similar at baseline and increased at 1 year post-TESI in both groups: 48.5 ± 14.6 m (p = 0.001) for the younger and 35.9 ± 18.3 m (p = 0.038) for the older participants (p = NS between groups). The older group exhibited a significant reduction in MLHFQ score (−7.04 ± 3.54; p = 0.022), whereas the younger than 60 age group had a borderline significant reduction (−11.22 ± 5.24; p = 0.058) from baseline (p = NS between groups). Although there were significant reductions in absolute scar size from baseline to 1 year post-TESI, the effect did not differ by age.ConclusionsMSC therapy with TESI in ICM patients improves 6MWD and MLHFQ score and reduces myocardial infarction size. Importantly, older individuals did not have an impaired response to MSC therapy

    Unique Aspects of the Design of Phase I/II Clinical Trials of Stem Cell Therapy

    Get PDF
    This chapter will review the unique aspects and limitations of the design of phase I/II (safety and efficacy) clinical trials of stem cell therapy. Although the classical pharmacologic principles applicable to drugs are not applicable to biologic (live cell) therapeutic agents, an important stage in the development of any new therapeutic agent is the establishment of an optimal dosage and delivery route. This can be particularly challenging when the treatment is a biologic agent, such as stem cells, that may exert its therapeutic effects via complex or poorly understood mechanisms. To date, clinical studies have shown inconsistent findings regarding the relationship between cell dose and clinical outcomes. This can be at least partially attributed to variations in donor cell type, source, characteristics, dosing/concentration, delivery route, underlying mechanisms of action, and efficacy endpoints tested. The current recommendations will be reviewed herein to give new investigators a general understanding of the unique issues that need to be considered and addressed when designing a stem cell therapy phase I/II clinical trial

    The use of mesenchymal stromal cells in acute and chronic heart disease

    No full text
    This chapter examines the therapeutic use of Mesenchymal stromal cells (MSCs) for acute and chronic ischemic heart disease in the preclinical and clinical setting as well as the possible mechanisms involved in their reversal of cardiac remodeling. MSCs are a particularly attractive candidate due to their ease of isolation, immune privilege, ability to stimulate endogenous cardiac stem cells (CSCs), and the release of beneficial paracrine factors. MSCs are particularly effective in preventing abnormal cardiac remodeling in the setting of acute MI (AMI) owing to their potent immunomodulatory properties, which are particularly important for the use of allogeneic MSCs. The antifibrotic effects of MSCs are accompanied by both cardiomyogenesis and neovascularization. Possible mechanisms leading to vasculogenesis include the differentiation of MSCs into vascular smooth muscle cells and endothelial cells, the release of pro‐angiogenic and pro‐arteriogenic paracrine factors, as well as the recruitment of endothelial progenitor cells (EPCs)
    corecore