7 research outputs found

    Fusarium and Aspergillus mycotoxins effects on dairy cow health, performance and the efficacy of Anti-Mycotoxin Additive

    No full text
    One hundred two samples of feeds made in Lithuania, which included maize silage, grass-legume silage, hay and ensiled crimped maize were investigated during 2008-2012 for contamination with some mycotoxins. The highest concentrations of mycotoxins determined were those of deoxynivalenol (DON) – 471.0 μg/kg and aflatoxin B1 (AFB1) – 21.2 μg/kg in ryegrass silage from bales, and zearalenone (ZEA) – 625.0 μg/kg in maize silage from trenches. The present study has been carried out based on these data because animal feeds contaminated with mycotoxins can cause reduced productivity of dairy cows and health disorders in the long term. The aim of this study was to investigate the long-term exposure of toxic effects of a diet naturally contaminated with low concentrations of mycotoxins on milk composition and biochemical, hematological, immunological parameters of dairy cows and to determine the anti-mycotoxin effect of Mycofix Plus 3.E. Twenty eight clinically healthy, medium productive Lithuanian Red cows were selected. ZEA was a major contaminant found in the corn silage at concentration levels of up to 1000.0 μg/kg of dry matter. DON was the second major found in the hay at concentration levels of up to 600.0 μg/kg of dry matter. The highest concentration AFB1- 10.0 μg/kg was determined in ground barley. The Anti-Mycotoxin Additive (AMA) Mycofix Plus 3.E was given individually to 14 cows at a concentration of 40.0 g daily for 9 weeks. The present results indicate that feeds naturally contaminated with low concentration of mycotoxins produced by Fusarium spp. and Aspergillus spp. in a diet of dairy cows can have a negative influence on somatic cell count, blood parameters and immunity. The addition of an Anti-Mycotoxin Additive (Mycofix Plus 3.E) to diet of dairy cows can prevent many of these effects

    Molecular characterization of ochratoxigenic fungi associated with poultry feedstuffs in Saudi Arabia

    No full text
    Fungal and mycotoxins contamination of food and poultry feeds can occur at each step along the chain from grain production, storage, and processing. A total of 200 samples comprising of mixed poultry feedstuffs (n = 100) and their ingredients (n = 100) were collected from Riyadh, Alhassa, Qassium, and Jeddah cities in Saudi Arabia. These samples were screened for contamination by fungi. Penicillium chrysogenum was the predominant species taking into its account and frequency, respectively, in both mixed poultry feedstuff and barley samples (4,561.9 and 687 fungal colony-forming units (CFU)/g) and (66% and 17%). Moisture content was an important indicator for the count of fungi and ochratoxin A. Ochratoxin analysis of plate cultures was performed by a HPLC technique. Sample of mixed poultry feedstuff which was collected from Jeddah displayed the highest level of ochratoxin (14.8 µg/kg) and moisture content (11.5%). Corn grains samples were highly contaminated by ochratoxin A (450 and 423 µg/kg) and recorded the highest moisture contents (14.1 and 14.5%). Ochratoxin A production in fungal species isolated from mixed poultry feedstuff samples were high with P. verrucosum (5.5 μg/kg) and A. niger (1.1 μg/kg). In sorghum and corn grains, the highest ochratoxins producing species were P. viridicatum (5.9 μg/kg) and A. niger (1.3 μg/kg), respectively. Sixty-three isolates of A. niger were ochratoxigenic, and all of them showed the presence of pks genes using PKS15C-MeT and PKS15KS primer pairs. The detection technique of A. niger in poultry feedstuff samples described in the present study was successfully used as a rapid and specific protocol for early detection of A. niger without cultivation on specific media
    corecore