148 research outputs found

    Using a quantum dot as a high-frequency shot noise detector

    Full text link
    We present the experimental realization of a Quantum Dot (QD) operating as a high-frequency noise detector. Current fluctuations produced in a nearby Quantum Point Contact (QPC) ionize the QD and induce transport through excited states. The resulting transient current through the QD represents our detector signal. We investigate its dependence on the QPC transmission and voltage bias. We observe and explain a quantum threshold feature and a saturation in the detector signal. This experimental and theoretical study is relevant in understanding the backaction of a QPC used as a charge detector.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Seismotectonic investigations in the inner Cottian Alps (Italian Western Alps): An integrated approach

    Get PDF
    This work integrates the results of recent geological–structural studies with new seismological data for the inner Cottian Alps to investigate the connection between faults and seismicity. The major post-metamorphic tectonic feature of this sector is represented by a N–S structure, named Lis–Trana Deformation Zone (LTZ). Since the Late Oligocene, this structure accommodated right-lateral (Late Oligocene–Early Miocene) and subsequently normal (post-Early Miocene) displacements. In the Pleistocene, the activity of the LTZ seems to have caused the development of lacustrine basins inside the valleys that drain this sector of Western Alps. The present-day seismicity joins the northern part of the LTZ and, southwards, other minor sub-parallel structures. In transversal cross-section hypocentres highlight steep surfaces. Focal mechanisms calculated along this structure show both extensional and strike–slip solutions, mostly with one roughly N–S striking nodal plane. Both sub-horizontal (with NE–SW to ENE–WSW trend) and steeply dipping P axes with N–S to NW–SE sub-horizontal T axes are observed. Even if clear evidence of Quaternary tectonic activity in the area is missing, on the basis of the available seismological and geological data we propose that in the inner Northern Cottian Alps the present-day seismic activity may be connected to the LTZ, interpreted as minor sub-parallel fault strand of the Canavese Line. The kinematics of this structure is consistent with the focal mechanisms calculated in this area. Structural and seismological data indicate that LTZ is active under a bulk dextral–transtensive regime since the late Oligocene in the inner Cottian Alps, in agreement with the data published for the adjacent domain of the chain.Published1-163.3. Geodinamica e struttura dell'interno della TerraJCR Journalrestricte
    • …
    corecore