1,966 research outputs found

    Correlation between patent foramen ovale, cerebral "lesions" and neuropsychometric testing in experienced sports divers: does diving damage the brain?

    Get PDF
    SCUBA diving exposes divers to decompression sickness (DCS). There has been considerable debate whether divers with a Patent Foramen Ovale of the heart have a higher risk of DCS because of the possible right-to-left shunt of venous decompression bubbles into the arterial circulation. Symptomatic neurological DCS has been shown to cause permanent damage to brain and spinal cord tissue; it has been suggested that divers with PFO may be at higher risk of developing subclinical brain lesions because of repeated asymptomatic embolization of decompression-induced nitrogen bubbles. These studies however suffer from several methodological flaws, including self-selection bias. We recruited 200 volunteer divers from a recreational diving population who had never suffered from DCS; we then randomly selected 50 of those for further investigation. The selected divers underwent brain Magnetic Resonance Imaging to detect asymptomatic brain lesions, contrast trans oesophageal echocardiography for PFO, and extensive neuro-psychometric testing. Neuro-psychometry results were compared with a control group of normal subjects and a separate control group for subjects exposed to neurotoxic solvents. Forty two divers underwent all the tests and are included in this report. Grade 2 Patent Foramen Ovale was found in 16 (38%) of the divers; brain Unidentified Bright Objects (UBO's) were found in 5 (11.9%). There was no association between PFO and the presence of UBO's (P = 0.693) or their size (p = 0.5) in divers. Neuropsychometric testing in divers was significantly worse from controls in two tests, Digit Span Backwards (DSB; p < 0.05) and Symbol-Digit-Substitution (SDS; p 0.01). Compared to subjects exposed to neurotoxic solvents, divers scored similar on DSB and SDS tests, but significantly better on the Simple Reaction Time (REA) and Hand-Eye Coordination (EYE) tests. There was no correlation between PFO, number of UBO's and any of the neuro-psychometric tests. We conclude that for uneventful recreational diving, PFO does not appear to influence the presence of UBO's. Diving by itself seems to cause some decrease of short-term memory and higher cognitive function, including visual motor skills; this resembles some of the effects of nitrogen narcosis and we suggest that this may be a prolonged effect of diving

    Evolution in the iron abundance of the ICM

    Get PDF
    We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies at z>0.3z>0.3, which cover a temperature range of 3>kT>153> kT > 15 keV. Our analysis is aimed at measuring the iron abundance in the ICM out to the highest redshift probed to date. We find that the emission-weighted iron abundance measured within (0.15−0.3)Rvir(0.15-0.3) R_{vir} in clusters below 5 keV is, on average, a factor of ∼2\sim2 higher than in hotter clusters, following Z(T)≃0.88T−0.47Z⊙Z(T)\simeq 0.88 T^{-0.47} Z_\odot, which confirms the trend seen in local samples. We made use of combined spectral analysis performed over five redshift bins at 0.3>z>1.30.3> z > 1.3 to estimate the average emission weighted iron abundance. We find a constant average iron abundance ZFe≃0.25Z⊙Z_{Fe}\simeq 0.25 Z_\odot as a function of redshift, but only for clusters at z>0.5z>0.5. The emission-weighted iron abundance is significantly higher (ZFe≃0.4Z⊙Z_{Fe}\simeq0.4 Z_\odot) in the redshift range z≃0.3−0.5z\simeq0.3-0.5, approaching the value measured locally in the inner 0.15Rvir0.15 R_{vir} radii for a mix of cool-core and non cool-core clusters in the redshift range 0.1<z<0.30.1<z<0.3. The decrease in ZFeZ_{Fe} with zz can be parametrized by a power law of the form ∼(1+z)−1.25\sim(1+z)^{-1.25}. The observed evolution implies that the average iron content of the ICM at the present epoch is a factor of ∼2\sim2 larger than at z≃1.2z\simeq 1.2. We confirm that the ICM is already significantly enriched (ZFe≃0.25Z⊙Z_{Fe}\simeq0.25 Z_\odot) at a look-back time of 9 Gyr. Our data provide significant constraints on the time scales and physical processes that drive the chemical enrichment of the ICM.Comment: 4 pages, 4 figures, to appear in the Proceedings of "The Extreme Universe in the Suzaku Era", Dicember 2006, Kyoto (Japan

    Rayleigh-Taylor instability under an inclined plane

    Get PDF
    We revisit the canonical Rayleigh-Taylor instability and investigate the case of a thin film of fluid upon the underside of an inclined plane. The presence of a natural flow along the plane competes with the conventional droplet forming instability. In particular, experiments reveal that no drops form for inclinations greater than a critical value. These features are rationalized in the context of the absolute/convective analysis conducted in this article

    The evolution of the spatially-resolved metal abundance in galaxy clusters up to z=1.4

    Get PDF
    We present the combined analysis of the metal content of 83 objects in the redshift range 0.09-1.39, and spatially-resolved in the 3 bins (0-0.15, 0.15-0.4, >0.4) R500, as obtained with similar analysis using XMM-Newton data in Leccardi & Molendi (2008) and Baldi et al. (2012). We use the pseudo-entropy ratio to separate the Cool-Core (CC) cluster population, where the central gas density tends to be relatively higher, cooler and more metal rich, from the Non-Cool-Core systems. The average, redshift-independent, metal abundance measured in the 3 radial bins decrease moving outwards, with a mean metallicity in the core that is even 3 (two) times higher than the value of 0.16 times the solar abundance in Anders & Grevesse (1989) estimated at r>0.4 R500 in CC (NCC) objects. We find that the values of the emission-weighted metallicity are well-fitted by the relation Z(z)=Z0(1+z)−γZ(z) = Z_0 (1+z)^{-\gamma} at given radius. A significant scatter, intrinsic to the observed distribution and of the order of 0.05-0.15, is observed below 0.4 R500. The nominal best-fit value of γ\gamma is significantly different from zero in the inner cluster regions (γ=1.6±0.2\gamma = 1.6 \pm 0.2) and in CC clusters only. These results are confirmed also with a bootstrap analysis, which provides a still significant negative evolution in the core of CC systems (P>99.9 per cent). No redshift-evolution is observed when regions above the core (r > 0.15 R500) are considered. A reasonable good fit of both the radial and redshift dependence is provided from the functional form Z(r,z)=Z0(1+(r/0.15R500)2)−β(1+z)−γZ(r,z)=Z_0 (1+(r/0.15 R500)^2)^{-\beta} (1+z)^{-\gamma}, with (Z0,β,γ)=(0.83±0.13,0.55±0.07,1.7±0.6)(Z_0, \beta, \gamma) = (0.83 \pm 0.13, 0.55 \pm 0.07, 1.7 \pm 0.6) in CC clusters and (0.39±0.04,0.37±0.15,0.5±0.5)(0.39 \pm 0.04, 0.37 \pm 0.15, 0.5 \pm 0.5) for NCC systems. Our results represent the most extensive study of the spatially-resolved metal distribution in the cluster plasma as function of redshift.Comment: 5 pages. Research Note accepted for publication in A&

    Possible methods for the determination of the PP-parity of the Θ+\Theta^+-pentaquark in NN-collisions

    Full text link
    We present two possibilities to determine the P-parity of the pentaquark Θ+\Theta^+, in a model independent way, via the measurement of polarization observables in p+p→Θ++Σ+p+p\to \Theta^+ +\Sigma^+, or n+p→Θ++Λ0n+p\to \Theta^+ +\Lambda^0, in the near threshold region. Besides the measurement of the spin correlation coefficient, Axx=AyyA_{xx}=A_{yy}, (in collisions of transversally polarized nucleons), the coefficient DxxD_{xx} of polarization transfer from the initial proton to the final Σ+(Λ0) \Sigma^+(\Lambda^0) hyperon is also unambiguously related to the Θ+\Theta^+ parity.Comment: 7 pages, 1 figur

    Tracing the evolution in the iron content of the ICM

    Get PDF
    We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies at z>0.3, which cover a temperature range of 3>kT>15 keV. Our analysis is aimed at measuring the iron abundance in the ICM out to the highest redshift probed to date. We find that the emission-weighted iron abundance measured within (0.15-0.3)R_vir in clusters below 5 keV is, on average, a factor of ~2 higher than in hotter clusters, following Z(T)~0.88T^-(0.47)Z_o, which confirms the trend seen in local samples. We made use of combined spectral analysis performed over five redshift bins at 0.3>z>1.3 to estimate the average emission weighted iron abundance. We find a constant average iron abundance Z_Fe~0.25Z_o as a function of redshift, but only for clusters at z>0.5. The emission-weighted iron abundance is significantly higher (Z_Fe~0.4Z_o) in the redshift range z~0.3-0.5, approaching the value measured locally in the inner 0.15R_vir radii for a mix of cool-core and non cool-core clusters in the redshift range 0.1<z<0.3. The decrease in Z_Fe with redshift can be parametrized by a power law of the form ~(1+z)^(-1.25). The observed evolution implies that the average iron content of the ICM at the present epoch is a factor of ~2 larger than at z=1.2. We confirm that the ICM is already significantly enriched (Z_Fe~0.25Z_o) at a look-back time of 9 Gyr. Our data provide significant constraints on the time scales and physical processes that drive the chemical enrichment of the ICM.Comment: 6 pages, 6 figures, to appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    High efficiency thermionic converter studies

    Get PDF
    The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV

    A research to study the unstoppable subterranean journey of microplastics

    Get PDF
    Microplastics (MPs) are a global problem, contaminating remote areas too. However, different environments are poorly studied, such as subterranean ones and karst areas, despite the global drinking water sources and the environmental heritages. MPs can endanger the fragile subterranean ecosystems, be consumed or assimilated by animals, damage speleothems, and pollute karst aquifers. The aim of this multidisciplinary research is to investigate MP pollution in waters and sediments in karst surface and subterranean environments from a geological, biological and environmental point of view, in order to monitor the state of ecosystems. Samples from different European karst areas were collected and investigated, from show caves to unexplored caves, from surface watercourses to groundwaters. The sediments of three Italian show caves (Bossea, Borgio Verezzi and Toirano caves, Piedmont and Liguria. Italy) were analyzed, highlighting the presence of high amount of MPs along tourist paths and in speleological areas. Surface and subterranean waters of Bossea karst system showed MP pollution in all examined samples, underlining the importance of the entire aquifer karst systems monitoring, even susceptible to contamination by surface pollutants. Different protected aquatic surface (spring) and subterranean (caves) environments of the Classical Karst were analyzed in order to verify micropollution in habitats hosting particularly protected species such as the olm Proteus anguinus. All samples highlighted high values of MPs and anthropogenic microfibers. Sediment samples in not jet explored caves of Abruzzo region, Italy, were collected to verify MPs pollution even in underground environments not directly affected by human presence, showing still little threatened habitats by MP pollution. Samples from different caves in Herzegovina and Slovenia, and from Italian springs with different karst characterizations will be analyzed too, in order to understand MP transport in active karst systems and deposition in vadose zones. Other micropollutants linked to MPs will be analyzed too. Alongside, specialized hypogean crustaceans from Bossea karst system were analyzed in order to understand micropollutants ingestion even in subterranean habitats (Sforzi et al., 2024). Karst areas and caves are one of the most important and well-known geological features in the world, fragile and unique ecosystems with an exceptional scientific, cultural and environmental value, as well as an important economic resource. Monitoring of these environments is fundamental for their conservation and to propose new strategies for the protection and conservation of karst habitats. Sforzi L. et al. (2021) - (Micro-)Plastics in Saturated and Unsaturated Groundwater Bodies: First Evidence of Presence in Groundwater Fauna and Habitats. Sustainability, 2024, 16(6), 2532, https://doi.org/10.3390/su1606253

    Apparent high metallicity in 3-4 keV galaxy clusters: the inverse iron-bias in action in the case of the merging cluster Abell 2028

    Get PDF
    Recent work based on a global measurement of the ICM properties find evidence for an increase of the iron abundance in galaxy clusters with temperature around 2-4 keV up to a value about 3 times larger than that typical of very hot clusters. We have started a study of the metal distribution in these objects from the sample of Baumgartner et al. (2005), aiming at resolving spatially the metal content of the ICM. We report here on a 42ks XMM observation of the first object of the sample, the cluster Abell 2028. The XMM observation reveals a complex structure of the cluster over scale of 300 kpc, showing an interaction between two sub-clusters in cometary-like configurations. At the leading edges of the two substructures cold fronts have been detected. The core of the main subcluster is likely hosting a cool corona. We show that a one-component fit for this region returns a biased high metallicity. This inverse iron bias is due to the behavior of the fitting code in shaping the Fe-L complex. In presence of a multi-temperature structure of the ICM, the best-fit metallicity is artificially higher when the projected spectrum is modeled with a single temperature component and it is not related to the presence of both Fe-L and Fe-K emission lines in the spectrum. After accounting for the bias, the overall abundance of the cluster is consistent with the one typical of hotter, more massive clusters. We caution the interpretation of high abundances inferred when fitting a single thermal component to spectra derived from relatively large apertures in 3-4 keV clusters, because the inverse iron bias can be present. Most of the inferences trying to relate high abundances in 3-4 keV clusters to fundamental physical processes will likely have to be revised.Comment: 13 pages, 8 figures.Accepted for publication in Astronomy and Astrophysycs. Minor changes to match published versio
    • …
    corecore