310 research outputs found

    Translocator protein in late stage Alzheimer\u27s disease and Dementia with Lewy bodies brains

    Get PDF
    OBJECTIVE: Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer\u27s disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB. METHODS: TSPO density was measured in multiple regions of postmortem human brains in 20 different cases: seven late stage AD cases (Braak amyloid average: C; Braak tangle average: VI; Aged 74-88, mean: 83 ± 5 years), five DLB cases (Braak amyloid average: C; Braak tangle average: V; Aged 79-91, mean: 84 ± 4 years), and eight age-matched normal control cases (3 males, 5 females: aged 77-92 years; mean: 87 ± 6 years). Measurements were taken by quantitative autoradiography using [ RESULTS: No significant changes were found in TSPO density of the frontal cortex, striatum, thalamus, or red nucleus of the AD and DLB brains. A significant reduction in TSPO density was found in the substantia nigra (SN) of the AD and DLB brains compared to that of age-matched healthy controls. INTERPRETATION: This distinct pattern of TSPO density change in late stage AD and DLB cases may imply the occurrence of microglia dystrophy in late stage neurodegeneration. Furthermore, TSPO may not only be a microglia activation marker in early stage AD and DLB, but TSPO may also be used to monitor microglia dysfunction in the late stage of these diseases

    Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease

    Get PDF
    The epsilon4 allele of apolipoprotein E (APOE) and traumatic brain injury (TBI) are both risk factors for the development of Alzheimer's disease (AD). These factors may act synergistically, in that APOE4+ individuals are more likely to develop dementia after TBI. Because the mechanism underlying these effects is unclear, we questioned whether APOE4 and TBI interact either through effects on amyloid-beta (Abeta) or by enhancing cell death/tissue injury. We assessed the effects of TBI in PDAPP mice (transgenic mice that develop AD-like pathology) expressing human APOE3 (PDAPP:E3), human APOE4 (PDAPP:E4), or no APOE (PDAPP:E-/-). Mice were subjected to a unilateral cortical impact injury at 9-10 months of age and allowed to survive for 3 months. Abeta load, hippocampal/cortical volumes, and hippocampal CA3 cell loss were quantified using stereological methods. All of the groups contained mice with Abeta-immunoreactive deposits (56% PDAPP:E4, 20% PDAPP:E3, 75% PDAPP:E-/-), but thioflavine-S-positive Abeta (amyloid) was present only in the molecular layer of the dentate gyrus in the PDAPP:E4 mice (44%). In contrast, our previous studies showed that in the absence of TBI, PDAPP:E3 and PDAPP:E4 mice have little to no Abeta deposition at this age. After TBI, all of the Abeta deposits present in PDAPP:E3 and PDAPP:E-/- mice were diffuse plaques. In contrast to the effect of APOE4 on amyloid, PDAPP:E3, PDAPP:E4, and PDAPP:E-/- mice did not differ in the amount of brain tissue or cell loss. These data support the hypothesis that APOE4 influences the neurodegenerative cascade after TBI via an effect on Abeta

    Elevation-dependent influence of snow accumulation on forest greening

    Get PDF
    Rising temperatures and declining water availability have influenced the ecological function of mountain forests over the past half-century. For instance, warming in spring and summer and shifts towards earlier snowmelt are associated with an increase in wildfire activity and tree mortality in mountain forests in the western United States(1,2). Temperature increases are expected to continue during the twenty-first century in mountain ecosystems across the globe(3,4), with uncertain consequences. Here, we examine the influence of interannual variations in snowpack accumulation on forest greenness in the Sierra Nevada Mountains, California, between 1982 and 2006. Using observational records of snow accumulation and satellite data on vegetation greenness we show that vegetation greenness increases with snow accumulation. Indeed, we show that variations in maximum snow accumulation explain over 50% of the interannual variability in peak forest greenness across the Sierra Nevada region. The extent to which snow accumulation can explain variations in greenness varies with elevation, reaching a maximum in the water-limited mid-elevations, between 2,000 and 2,600 m. In situ measurements of carbon uptake and snow accumulation along an elevational transect in the region confirm the elevation dependence of this relationship. We suggest that mid-elevation mountain forest ecosystems could prove particularly sensitive to future increases in temperature and concurrent changes in snow accumulation and melt

    Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's Disease Diagnosis and Prognosis

    Get PDF
    Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10-15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181).Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age.Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential

    The roles of inflammation and immune mechanisms in Alzheimer's disease

    Get PDF
    AbstractThe Alzheimer's Association's Research roundtable met in April 2015 to explore the role of neuroinflammatory mechanisms in the progression of Alzheimer's disease (AD). The ability of innate immune cells, particularly microglia and astrocytes, to mediate neuroinflammation in AD has been implicated as a significant contributor to disease pathogenesis. Adaptive immunity, which plays an important role in responding to injury and some diseases of the central nervous system, may contribute to neuroinflammation in AD as well. Communication between the central and peripheral immune systems may also be important in AD. An increased understanding of the physiology of the innate immune system may aid the identification of new therapeutic targets or mechanisms. The development of predictive animal models and translatable neuroinflammation biomarkers for AD would also facilitate the advancement of novel treatments for innate immunity. Important challenges impeding the advancement of new therapeutic agents and strategies to overcome them were discussed

    The twilight of the Liberal Social Contract? On the Reception of Rawlsian Political Liberalism

    Get PDF
    This chapter discusses the Rawlsian project of public reason, or public justification-based 'political' liberalism, and its reception. After a brief philosophical rather than philological reconstruction of the project, the chapter revolves around a distinction between idealist and realist responses to it. Focusing on political liberalism’s critical reception illuminates an overarching question: was Rawls’s revival of a contractualist approach to liberal legitimacy a fruitful move for liberalism and/or the social contract tradition? The last section contains a largely negative answer to that question. Nonetheless the chapter's conclusion shows that the research programme of political liberalism provided and continues to provide illuminating insights into the limitations of liberal contractualism, especially under conditions of persistent and radical diversity. The programme is, however, less receptive to challenges to do with the relative decline of the power of modern states

    Constitutivism

    Get PDF
    A brief explanation and overview of constitutivism

    Biological Contribution to Social Influences on Alcohol Drinking: Evidence from Animal Models

    Get PDF
    Social factors have a tremendous influence on instances of heavy drinking and in turn impact public health. However, it is extremely difficult to assess whether this influence is only a cultural phenomenon or has biological underpinnings. Research in non-human primates demonstrates that the way individuals are brought up during early development affects their future predisposition for heavy drinking, and research in rats demonstrates that social isolation, crowding or low social ranking can lead to increased alcohol intake, while social defeat can decrease drinking. Neurotransmitter mechanisms contributing to these effects (i.e., serotonin, GABA, dopamine) have begun to be elucidated. However, these studies do not exclude the possibility that social effects on drinking occur through generalized stress responses to negative social environments. Alcohol intake can also be elevated in positive social situations, for example, in rats following an interaction with an intoxicated peer. Recent studies have also begun to adapt a new rodent species, the prairie vole, to study the role of social environment in alcohol drinking. Prairie voles demonstrate a high degree of social affiliation between individuals, and many of the neurochemical mechanisms involved in regulation of these social behaviors (for example, dopamine, central vasopressin and the corticotropin releasing factor system) are also known to be involved in regulation of alcohol intake. Naltrexone, an opioid receptor antagonist approved as a pharmacotherapy for alcoholic patients, has recently been shown to decrease both partner preference and alcohol preference in voles. These findings strongly suggest that mechanisms by which social factors influence drinking have biological roots, and can be studied using rapidly developing new animal models

    Cross-Species Transmission of a Novel Adenovirus Associated with a Fulminant Pneumonia Outbreak in a New World Monkey Colony

    Get PDF
    Adenoviruses are DNA viruses that naturally infect many vertebrates, including humans and monkeys, and cause a wide range of clinical illnesses in humans. Infection from individual strains has conventionally been thought to be species-specific. Here we applied the Virochip, a pan-viral microarray, to identify a novel adenovirus (TMAdV, titi monkey adenovirus) as the cause of a deadly outbreak in a closed colony of New World monkeys (titi monkeys; Callicebus cupreus) at the California National Primate Research Center (CNPRC). Among 65 titi monkeys housed in a building, 23 (34%) developed upper respiratory symptoms that progressed to fulminant pneumonia and hepatitis, and 19 of 23 monkeys, or 83% of those infected, died or were humanely euthanized. Whole-genome sequencing of TMAdV revealed that this adenovirus is a new species and highly divergent, sharing <57% pairwise nucleotide identity with other adenoviruses. Cultivation of TMAdV was successful in a human A549 lung adenocarcinoma cell line, but not in primary or established monkey kidney cells. At the onset of the outbreak, the researcher in closest contact with the monkeys developed an acute respiratory illness, with symptoms persisting for 4 weeks, and had a convalescent serum sample seropositive for TMAdV. A clinically ill family member, despite having no contact with the CNPRC, also tested positive, and screening of a set of 81 random adult blood donors from the Western United States detected TMAdV-specific neutralizing antibodies in 2 individuals (2/81, or 2.5%). These findings raise the possibility of zoonotic infection by TMAdV and human-to-human transmission of the virus in the population. Given the unusually high case fatality rate from the outbreak (83%), it is unlikely that titi monkeys are the native host species for TMAdV, and the natural reservoir of the virus is still unknown. The discovery of TMAdV, a novel adenovirus with the capacity to infect both monkeys and humans, suggests that adenoviruses should be monitored closely as potential causes of cross-species outbreaks

    Controversies in the management of advanced prostate cancer

    Get PDF
    For advanced prostate cancer, the main hormone treatment against which other treatments are assessed is surgical castration. It is simple, safe and effective, however it is not acceptable to all patients. Medical castration by means of luteinizing hormone-releasing hormone (LH-RH) analogues such as goserelin acetate provides an alternative to surgical castration. Diethylstilboestrol, previously the only non-surgical alternative to orchidectomy, is no longer routinely used. Castration reduces serum testosterone by around 90%, but does not affect androgen biosynthesis in the adrenal glands. Addition of an anti-androgen to medical or surgical castration blocks the effect of remaining testosterone on prostate cells and is termed combined androgen blockade (CAB). CAB has now been compared with castration alone (medical and surgical) in numerous clinical trials. Some trials show advantage of CAB over castration, whereas others report no significant difference. The author favours the view that CAB has an advantage over castration. No study has reported that CAB is less effective than castration. Of the anti-androgens which are available for use in CAB, bicalutamide may be associated with a lower incidence of side-effects compared with the other non-steroidal anti-androgens and, in common with nilutamide, has the advantage of once-daily dosing. Only one study has compared anti-androgens within CAB: bicalutamide plus LH-RH analogue and flutamide plus LH-RH analogue. At 160-week follow-up, the groups were equivalent in terms of survival and time to progression. However, bicalutamide caused significantly less diarrhoea than flutamide. Withdrawal and intermittent therapy with anti-androgens extend the range of treatment options. © 1999 Cancer Research Campaig
    corecore