110 research outputs found
The trafficking of GPR55 is regulated by the G protein-coupled receptor-associated sorting protein 1
The GPCR-associated sorting protein 1 regulates ligand-induced down-regulation of GPR55
Background and purposeMany GPCRs, including the CB(1) cannabinoid receptor, are down-regulated following prolonged agonist exposure by interacting with the GPCR-associated sorting protein-1 (GASP-1). The CB(1) receptor antagonist rimonabant has also recently been described to be an agonist at GPR55, a cannabinoid-related receptor. Here we investigated the post-endocytic properties of GPR55 after agonist exposure and tested whether GASP-1 is involved in this process.Experimental approachWe evaluated the direct protein-protein interaction of GPR55 with GASP-1 using (i) GST-binding assays and (ii) co-immunoprecipitation assays in GPR55-HEK293 cells with endogenous GASP-1 expression. We further tested the internalization, recycling and degradation of GPR55 using confocal fluorescence microscopy and biotinylation assays in the presence and absence of GASP-1 (lentiviral small hairpin RNA knockdown of GASP-1) under prolonged agonist [rimonabant (RIM), lysophosphatidylinositol (LPI)] stimulation.Key resultsWe showed that the prolonged activation of GPR55 with rimonabant or LPI down-regulates GPR55 via GASP-1. GASP-1 binds to GPR55 in vitro, and this interaction was required for targeting GPR55 for degradation. Disrupting the GPR55-GASP-1 interaction prevented post-endocytic receptor degradation, and thereby allowed receptor recycling.Conclusion and implicationsThese data implicate GASP-1 as an important regulator of ligand-mediated down-regulation of GPR55. By identifying GASP-1 as a key regulator of the trafficking and, by extension, functional expression of GPR55, we may be one step closer to gaining a better understanding of this receptor in response to cannabinoid drugs.Linked articlesThis article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7
The trafficking of GPR55 is regulated by the G protein-coupled receptor-associated sorting protein 1
The expanding functional roles and signaling mechanisms of adhesion G protein–coupled receptors
The adhesion class of G protein–coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N‐terminal region that is linked to a C‐terminal seven transmembrane (7TM) domain via a GPCR‐autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N‐terminal fragment (NTF) bound to the 7TM of the C‐terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell–cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs
Impaired Rho GTPase activation abrogates cell polarization and migration in macrophages with defective lipolysis
Infiltration of monocytes and macrophages into the site of inflammation is critical in the progression of inflammatory diseases such as atherosclerosis. Cell migration is dependent on the continuous organization of the actin cytoskeleton, which is regulated by members of the small Rho GTPase family (RhoA, Cdc42, Rac) that are also important for the regulation of signal transduction pathways. We have recently reported on reduced plaque formation in an atherosclerotic mouse model transplanted with bone marrow from adipose triglyceride lipase-deficient (Atgl−/−) mice. Here we provide evidence that defective lipolysis in macrophages lacking ATGL, the major enzyme responsible for triacylglycerol hydrolysis, favors an anti-inflammatory M2-like macrophage phenotype. Our data implicate an as yet unrecognized principle that insufficient lipolysis influences macrophage polarization and actin polymerization, resulting in impaired macrophage migration. Sustained phosphorylation of focal adhesion kinase [due to inactivation of its phosphatase by elevated levels of reactive oxygen species (ROS)] results in defective Cdc42, Rac1 and RhoA activation and in increased and sustained activation of Rac2. Inhibition of ROS production restores the migratory capacity of Atgl−/− macrophages. Since monocyte and macrophage migration are a prerequisite for infiltrating the arterial wall, our results provide a molecular link between lipolysis and the development of atherosclerosis
- …