6 research outputs found

    Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    Get PDF
    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel

    Mechanochemical reactions and hydrogen storage capacities in MBH4–SiS2 systems (M=Li or Na)

    Get PDF
    The hydrogen storage properties, and phase compositions of mechanochemically prepared mixtures of xMBH4-SiS2 (x = 2–8), where M = Li or Na, were investigated using gas sorption analysis, powder X-ray diffraction, and infrared and solid-state NMR spectroscopic methods. The 2LiBH4:1SiS2 system forms an amorphous product that releases ca. 4.3 wt % of H2 below 385 °C with a Tonset of 88 °C without detectable diborane emission. The dehydrogenated sample reversibly absorbs 1.5 wt % of H2 at 385 °C under 160 bar pressure. The H2 release from materials with varying LiBH4:SiS2 ratios peaks at 8.2 wt % for the 6LiBH4:1SiS2 composition, with a reversible hydrogen storage capacity of 2.4 wt %. The H2 desorption capacities of the Li-containing systems surpass those of Na-containing systems. Solid-state NMR studies indicate that products of mechanochemical reactions in the LiBH4SiS2 system consist of one-dimensional chains of edge-sharing SiS4/2 tetrahedra in which the non-bridging S-ends are terminated with Li+, which are further coordinated to the [BH4]− anions. A variety of possible polymorphs in the LiSiS-(BH4) composition space have been identified using first principles and thermodynamic modeling that supports the likelihood of formation of such novel complexes

    Unprecedented generation of 3D heterostructures by mechanochemical disassembly and re-ordering of incommensurate metal chalcogenides

    No full text
    3D heterostructures offer properties that are inaccessible in bulk single-phase solids, but synthetic approaches are limited. The authors use mechanochemical reshuffling of binary precursors and subsequent annealing to design structurally aligned misfit heterostructures with well-defined atomic arrangements
    corecore