30 research outputs found

    Stochastic Resonance with a Single Metastable State

    Full text link
    We study thermal instability in NbN superconducting stripline resonators. The system exhibits extreme nonlinearity near a bifurcation, which separates a monostable zone and an astable one. The lifetime of the metastable state, which is locally stable in the monostable zone, is measure near the bifurcation and the results are compared with a theory. Near bifurcation, where the lifetime becomes relatively short, the system exhibits strong amplification of a weak input modulation signal. We find that the frequency bandwidth of this amplification mechanism is limited by the rate of thermal relaxation. When the frequency of the input modulation signal becomes comparable or larger than this rate the response of the system exhibits sub-harmonics of various orders

    Observation of Bifurcations and Hysteresis in Nonlinear NbN Superconducting Microwave Resonators

    Full text link
    In this paper we report some extraordinary nonlinear dynamics measured in the resonance curve of NbN superconducting stripline microwave resonators. Among the nonlinearities observed: aburpt bifurcations in the resonance response at relatively low input powers, asymmetric resonances, multiple jumps within the resonance band, resonance frequency drift, frequency hysteresis, hysteresis loops changing direction and critical coupling phenomenon. Weak links in the NbN grain structure are hypothesized as the source of the nonlinearities.Comment: This work has been submitted to the IEEE for possible publicatio

    Josephson Amplifier for Qubit Readout

    Full text link
    We report on measurements of a Josephson amplifier (J-amp) suitable for quantum-state qubit readout in the microwave domain. It consists of two microstrip resonators which intersect at a Josephson ring modulator. A maximum gain of about 20 dB, a bandwidth of 9 MHz, and a center-frequency tunability of about 60 MHz with gain in excess of 10 dB have been attained for idler and signal of frequencies 6.4 GHz and 8.1 GHz, in accordance with theory. Maximum input power measurements of the J-amp show a relatively good agreement with theoretical prediction. We discuss how the amplifier characteristics can be improved.Comment: 9 pages, 4 figure

    Quantum Nondemolition Measurement of Discrete Fock States of a Nanomechanical Resonator

    Get PDF
    We study theoretically a radio frequency superconducting interference device integrated with both a nanomechanical resonator and an LC one. By applying adiabatic and rotating wave approximations, we obtain an effective Hamiltonian that governs the dynamics of the mechanical and LC resonators. Nonlinear terms in this Hamiltonian can be exploited for performing a quantum nondemolition measurement of Fock states of the nanomechanical resonator. We address the feasibility of experimental implementation and show that the nonlinear coupling can be made sufficiently strong to allow the detection of discrete mechanical Fock states
    corecore