1,716 research outputs found
Solar Wind Electric Fields in the Ion Cyclotron Frequency Range
Measurements of fluctuations of electric fields in the frequency range from a
fraction of one Hz to 12.5 Hz are presented, and corrected for the Lorentz
transformation of magnetic fluctuations to give the electric fields in the
plasma frame. The electric fields are large enough to provide the dominant
force on the ions of the solar wind in the region near the ion cyclotron
frequency of protons, larger than the force due to magnetic fluctuations. They
provide sufficient velocity space diffusion or heating to counteract
conservation of magnetic moment in the expanding solar wind to maintain nearly
isotropic velocity distributions
Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence
Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show
the spectral behavior of classical Kolmogorov fluid turbulence over an inertial
subrange and departures from this at short wavelengths, where energy should be
dissipated. Here we present the first measurements of the electric field
fluctuation spectrum over the inertial and dissipative wavenumber ranges in a
plasma. The inertial subrange is observed and
agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed
in this regime is shown to be consistent with the Alfv\'en speed. At smaller
wavelengths the electric spectrum is softer and is consistent
with the expected dispersion relation of short-wavelength kinetic Alfv\'en
waves. Kinetic Alfv\'en waves damp on the solar wind ions and electrons and may
act to isotropize them. This effect may explain the fluid-like nature of the
solar wind.Comment: submitted; 4 pages + 3 figure
Kinetic Scale Density Fluctuations in the Solar Wind
We motivate the importance of studying kinetic scale turbulence for
understanding the macroscopic properties of the heliosphere, such as the
heating of the solar wind. We then discuss the technique by which kinetic scale
density fluctuations can be measured using the spacecraft potential, including
a calculation of the timescale for the spacecraft potential to react to the
density changes. Finally, we compare the shape of the density spectrum at ion
scales to theoretical predictions based on a cascade model for kinetic
turbulence. We conclude that the shape of the spectrum, including the ion scale
flattening, can be captured by the sum of passive density fluctuations at large
scales and kinetic Alfven wave turbulence at small scales
Proton Heating in Solar Wind Compressible Turbulence with Collisions between Counter-propagating Waves
Magnetohydronamic turbulence is believed to play a crucial role in heating
the laboratorial, space, and astrophysical plasmas. However, the precise
connection between the turbulent fluctuations and the particle kinetics has not
yet been established. Here we present clear evidence of plasma turbulence
heating based on diagnosed wave features and proton velocity distributions from
solar wind measurements by the Wind spacecraft. For the first time, we can
report the simultaneous observation of counter-propagating magnetohydrodynamic
waves in the solar wind turbulence. Different from the traditional paradigm
with counter-propagating Alfv\'en waves, anti-sunward Alfv\'en waves (AWs) are
encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar
wind compressible turbulence. The counter-propagating AWs and SWs correspond
respectively to the dominant and sub-dominant populations of the imbalanced
Els\"asser variables. Nonlinear interactions between the AWs and SMWs are
inferred from the non-orthogonality between the possible oscillation direction
of one wave and the possible propagation direction of the other. The associated
protons are revealed to exhibit bi-directional asymmetric beams in their
velocity distributions: sunward beams appearing in short and narrow patterns
and anti-sunward broad extended tails. It is suggested that multiple types of
wave-particle interactions, i.e., cyclotron and Landau resonances with AWs and
SMWs at kinetic scales, are taking place to jointly heat the protons
perpendicularly and parallel
A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected
The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630) was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine, phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae (Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production. Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem composition and the role of phloem amino acids in regulating aphid performance
From ‘greenest government ever’ to ‘get rid of all the green crap’: David Cameron, the Conservatives and the environment
The environment was David Cameron’s signature issue underpinning his modernization agenda. In opposition the ‘Vote Blue, Go Green’ strategy had a positive impact on the party’s image: the environment operated as a valence issue in a period of raised public concern, particularly about climate change, and Cameron’s high-profile support contributed to the cross-party consensus that delivered radical change in climate policy. Although the Coalition government has implemented important environmental measures, the Conservatives have not enhanced their green credentials in government and Cameron has failed to provide strong leadership on the issue. Since 2010, climate change has to some extent been transformed into a positional issue. Conservative MPs, urged on by the right-wing press, have adopted an increasingly partisan approach to climate change, and opinion polls reveal clear partisan divisions on climate change amongst public opinion. As a positional issue climate change has become challenging for the Conservatives, showing them to be internally divided, rebellious and inclined to support producer interests. This article makes a contribution to our understanding of Conservative modernization, while also challenging the dominant assumption in the scholarly literature that the environment, particularly climate change, is a valence issue
- …