174 research outputs found
Assessment of the Perceived Role and Function of a Community Advisory Board in a NIH Center of Excellence: Lessons Learned
Background: The Community Advisory Board (CAB) was a vital component of the Center for Equal Health. The center addressed health disparities through community-based research and educational outreach initiatives. Objectives: To evaluate the perceived relationship of the CAB and Center, explore membersâ perceptions of the CABâs role, and elicit feedback on how to enhance the relationship between the Center and the CAB. Methods: Ten in-depth, semi-structured interviews were conducted. All interviews were transcribed verbatim and analyzed with a focus on predetermined codes. Results: Main themes focused on perception of CAB roles and need for utilization of board members; overall center challenges; and board member knowledge and communication within the center. Conclusions: Lessons learned mainly focused on clarification of CAB roles as necessary for more effective and efficient communication. Based on feedback, communication channels between the board and center were developed, orientation packets clarifying center roles were provided, and annual retreats were completed. Additional lessons learned for conducting community-academic partnerships are provided
Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition
Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the âautocrine extracellular matrix (ECM) depositionâ fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cellâdirected movement
Social Status Modulates Neural Activity in the Mentalizing Network
The current research explored the neural mechanisms linking social status to perceptions of the social world. Two fMRI studies provide converging evidence that individuals lower in social status are more likely to engage neural circuitry often involved in âmentalizingâ or thinking about others\u27 thoughts and feelings. Study 1 found that college students\u27 perception of their social status in the university community was related to neural activity in the mentalizing network (e.g., DMPFC, MPFC, precuneus/PCC) while encoding social information, with lower social status predicting greater neural activity in this network. Study 2 demonstrated that socioeconomic status, an objective indicator of global standing, predicted adolescents\u27 neural activity during the processing of threatening faces, with individuals lower in social status displaying greater activity in the DMPFC, previously associated with mentalizing, and the amygdala, previously associated with emotion/salience processing. These studies demonstrate that social status is fundamentally and neurocognitively linked to how people process and navigate their social worlds
An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins.
The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut-brain axis (GBA). Our dual-flow GIT-brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT-brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death
What Can State Medical Boards Do to Effectively Address Serious Ethical Violations?
State Medical Boards (SMBs) can take severe disciplinary actions (e.g., license revocation or suspension) against physicians who commit egregious wrongdoing in order to protect the public. However, there is noteworthy variability in the extent to which SMBs impose severe disciplinary action. In this manuscript, we present and synthesize a subset of 11 recommendations based on findings from our teamâs larger consensus-building project that identified a list of 56 policies and legal provisions SMBs can use to better protect patients from egregious wrongdoing by physicians
What can state medical boards do to effectively address serious ethical violations?
State Medical Boards (SMBs) can take severe disciplinary actions (e.g., license revocation or suspension) against physicians who commit egregious wrongdoing in order to protect the public. However, there is noteworthy variability in the extent to which SMBs impose severe disciplinary action. In this manuscript, we present and synthesize a subset of 11 recommendations based on findings from our team\u27s larger consensus-building project that identified a list of 56 policies and legal provisions SMBs can use to better protect patients from egregious wrongdoing by physicians
An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins
The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut-brain axis (GBA). Our dual-flow GIT-brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT-brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death
The WiggleZ Dark Energy Survey: Survey Design and First Data Release
The WiggleZ Dark Energy Survey is a survey of 240,000 emission line galaxies
in the distant universe, measured with the AAOmega spectrograph on the 3.9-m
Anglo-Australian Telescope (AAT). The target galaxies are selected using
ultraviolet photometry from the GALEX satellite, with a flux limit of NUV<22.8
mag. The redshift range containing 90% of the galaxies is 0.2<z<1.0. The
primary aim of the survey is to precisely measure the scale of baryon acoustic
oscillations (BAO) imprinted on the spatial distribution of these galaxies at
look-back times of 4-8 Gyrs. Detailed forecasts indicate the survey will
measure the BAO scale to better than 2% and the tangential and radial acoustic
wave scales to approximately 3% and 5%, respectively.
This paper provides a detailed description of the survey and its design, as
well as the spectroscopic observations, data reduction, and redshift
measurement techniques employed. It also presents an analysis of the properties
of the target galaxies, including emission line diagnostics which show that
they are mostly extreme starburst galaxies, and Hubble Space Telescope images,
which show they contain a high fraction of interacting or distorted systems. In
conjunction with this paper, we make a public data release of data for the
first 100,000 galaxies measured for the project.Comment: Accepted by MNRAS; this has some figures in low resolution format.
Full resolution PDF version (7MB) available at
http://www.physics.uq.edu.au/people/mjd/pub/wigglez1.pdf The WiggleZ home
page is at http://wigglez.swin.edu.au
Characteristics of the National Applicant Pool for Clinical Informatics Fellowships (2016-2017)
We conducted a national study to assess the numbers and diversity of applicants for 2016 and 2017 clinical informatics fellowship positions. In each year, we collected data on the number of applications that programs received from candidates who were ultimately successful vs. unsuccessful. In 2017, we also conducted an anonymous applicant survey. Successful candidates applied to an average of 4.2 and 5.5 programs for 2016 and 2017, respectively. In the survey, unsuccessful candidates reported applying to fewer programs. Assuming unsuccessful candidates submitted between 2-5 applications each, the total applicant pool numbered 42-69 for 2016 (competing for 24 positions) and 52-85 for 2017 (competing for 30 positions). Among survey respondents (n=33), 24% were female, 1 was black and none were Hispanic. We conclude that greater efforts are needed to enhance interest in clinical informatics among medical students and residents, particularly among women and members of underrepresented minority groups
COgnitive behavioural therapy versus standardised medical care for adults with Dissociative non-Epileptic Seizures (CODES): statistical and economic analysis plan for a randomised controlled trial.
BACKGROUND: Dissociative seizures (DSs), also called psychogenic non-epileptic seizures, are a distressing and disabling problem for many patients in neurological settings with high and often unnecessary economic costs. The COgnitive behavioural therapy versus standardised medical care for adults with Dissociative non-Epileptic Seizures (CODES) trial is an evaluation of a specifically tailored psychological intervention with the aims of reducing seizure frequency and severity and improving psychological well-being in adults with DS. The aim of this paper is to report in detail the quantitative and economic analysis plan for the CODES trial, as agreed by the trial steering committee.
METHODS: The CODES trial is a multicentre, pragmatic, parallel group, randomised controlled trial performed to evaluate the clinical effectiveness and cost-effectiveness of 13 sessions of cognitive behavioural therapy (CBT) plus standardised medical care (SMC) compared with SMC alone for adult outpatients with DS.
DISCUSSION: The objectives and design of the trial are summarised, and the aims and procedures of the planned analyses are illustrated. The proposed analysis plan addresses statistical considerations such as maintaining blinding, monitoring adherence with the protocol, describing aspects of treatment and dealing with missing data. The formal analysis approach for the primary and secondary outcomes is described, as are the descriptive statistics that will be reported. This paper provides transparency to the planned inferential analyses for the CODES trial prior to the extraction of outcome data. It also provides an update to the previously published trial protocol and guidance to those conducting similar trials.
TRIAL REGISTRATION: ISRCTN registry ISRCTN05681227 (registered on 5 March 2014); ClinicalTrials.gov NCT02325544 (registered on 15 December 2014)
- âŠ