12 research outputs found

    A non-redundant role of complement protein C1q in normal and adverse pregnancy

    Get PDF
    Availability of data and materials: Not applicable.Copyright © The Author(s) 2022. Complement component 1q (C1q) is the recognition molecule of the classical pathway of the complement system that can bind to an array of closely spaced antigen-bound immunoglobulin G (IgG) and IgM antibodies. In addition to its involvement in defence against a range of pathogens and clearance of apoptotic and necrotic cells, C1q has also been implicated in immune and non-immune homeostasis. C1q is locally produced by immune cells such as monocytes, macrophages, and dendritic cells. C1q is also synthesized by decidual endothelial cells, thus acting as a link between decidual cells and trophoblasts, as well as contributing to the remodelling of spiral arteries. Furthermore, C1q is produced by the extravillous trophoblasts (EVTs) invading the decidua. As a pro-angiogenic molecule, C1q is also important for normal placentation processes as it favors the active angiogenesis in the developing decidua. These observations have been validated by C1q gene knock-out mice which showed pre-eclampsia (PE)-like symptoms, characterized by hypertension, proteinuria, glomerular endotheliosis, and increased soluble fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) ratio, and increased oxidative stress. The role of C1q in normal and adverse human pregnancy is being studied extensively due to its absence or low level as a likely precipitating factor for the development of PE.Funding: Not applicable

    THE CLINICOPATHOLOGICAL AND PROGNOSTIC SIGNIFICANCES OF C1Q EXPRESSION IN GLIOMAS: A BIOINFORMATICS ANALYSIS

    Get PDF
    Introduction. The complement system represents an important component of the inflammatory response and acts as a functional bridge between the innate and adaptive immune response. The contribution of the complement component C1q in the pathophysiology of brain cancers has been recently considered in light of its well-known involvement in carcinogenesis. Brain malignancies arise from cells of the CNS and are classified according to the tissue of phylogenetic origin. Gliomas represent the most common and aggressive form of brain tumours in adults. They derive from glial cells that help to support the functions of the other main brain cells type, the neurons (1). These are a heterogeneous group of diseases with multiple subtypes (1, 2). Glioblastoma multiforme (GBM) is the most common and fatal form of a primary brain tumour, accounting for approximately 60% of all glioma cases (3), whereas grade-II and -III gliomas are the second most common type of glioma in adults (~30%) (3). C1q molecule, together with other complement components, can be locally produced within the CNS by microglia and astrocytes, rendering it an attractive player in primary brain tumour development (4). The role of C1q in gliomas microenvironment is still poorly characterized and it is still quite puzzling whether it exerts a beneficial or a harmful activity for cancer progression. In the present study we performed a bioinformatics analysis aimed at investigating if C1q can serve as a potential prognostic marker for gliomas. Methods. The expression levels of C1qA, C1qB and C1qC genes in gliomas were analysed using Oncomine analysis. Available genomics data from The Cancer Genome Atlas project was used for Kaplan–Meier survival analysis to generate survival probability plots, using UALCAN analysis. Results. From the analysis performed on several data- sets using Oncomine, we showed a significantly higher mRNA expression levels for C1qA, C1qB and C1qC chains were detected in gliomas (different histotypes and grades) as compared to normal brain tissue (Fig. 1). We observed a positive correlation between the mRNA expression of C1qA, C1qB and C1qC mRNA poly- peptide chains and the unfavorable prognosis only in gliomas grade-II and -III, where the survival probability is indeed reduced (P <0.05) (Fig. 2). No correlation was observed in glioblastoma multiforme (Fig. 2). By immu- nohistochemical approaches we detected a high depo- sition of C1q in the tumor microenvironment of both in grade-II and -III gliomas and in GBMs examined (Fig. 3a glioma, 3b glioblastoma multiforme; 20x Magnification). Moreover, in double immunocytochemical experiments we demonstrated that CD68 positive infiltrating cells are actively synthesizing C1q in the tumor micro-envi- ronment. CD68 expression is characteristic of tumor- associated macrophages, whose enrichment in glioma has been associated with poor prognosis (5). Conclusion. In our study C1q expression was significantly correlated with poor survival probability in gliomas grade-II and -III while this is not the case for GBM. These data altogether underline how complex, multifaceted and still poorly understood is the role C1q can exert on tumor progression, and how the very same molecule can differentially affect the outcome depending on the biological context it comes to act

    The Inflammatory Feed-Forward Loop Triggered by the Complement Component C3 as a Potential Target in Endometriosis

    Get PDF
    The complement system is a major component of humoral innate immunity, acting as a first line of defense against microbes via opsonization and lysis of pathogens. However, novel roles of the complement system in inflammatory and immunological processes, including in cancer, are emerging. Endometriosis (EM), a benign disease characterized by ectopic endometrial implants, shows certain unique features of cancer, such as the capacity to invade surrounding tissues, and in severe cases, metastatic properties. A defective immune surveillance against autologous tissue deposited in the peritoneal cavity allows immune escape for endometriotic lesions. There is evidence that the glandular epithelial cells found in endometriotic implants produce and secrete the complement component C3. Here, we show, using immunofluorescence and RT-qPCR, the presence of locally synthesized C3 in the ectopic endometriotic tissue, but not in the eutopic tissue. We generated a murine model of EM via injection of minced uterine tissue from a donor mouse into the peritoneum of recipient mice. The wild type mice showed greater amount of cyst formation in the peritoneum compared to C3 knock-out mice. Peritoneal washings from the wild type mice with EM showed more degranulated mast cells compared to C3 knock-out mice, consistent with higher C3a levels in the peritoneal fluid of EM patients. We provide evidence that C3a participates in an auto-amplifying loop leading to mast cell infiltration and activation, which is pathogenic in EM. Thus, C3 can be considered a marker of EM and its local synthesis can promote the engraftment of the endometriotic cysts

    SARS-CoV-2 modulates virus receptor expression in placenta and can induce trophoblast fusion, inflammation and endothelial permeability

    Get PDF
    SARS-CoV-2 is a devastating virus that induces a range of immunopathological mechanisms including cytokine storm, apoptosis, inflammation and complement and coagulation pathway hyperactivation. However, how the infection impacts pregnant mothers is still being worked out due to evidence of vertical transmission of the SARS-CoV-2, and higher incidence of preeclampsia, preterm birth, caesarian section, and fetal mortality. In this study, we assessed the levels of the three main receptors of SARS-CoV-2 (ACE2, TMPRSS2 and CD147) in placentae derived from SARS-CoV-2 positive and negative mothers. Moreover, we measured the effects of Spike protein on placental cell lines, in addition to their susceptibility to infection. SARS-CoV-2 negative placentae showed elevated levels of CD147 and considerably low amount of TMPRSS2, making them non-permissive to infection. SARS-CoV-2 presence upregulated TMPRSS2 expression in syncytiotrophoblast and cytotrophoblast cells, thereby rendering them amenable to infection. The non-permissiveness of placental cells can be due to their less fusogenicity due to infection. We also found that Spike protein was capable of inducing proinflammatory cytokine production, syncytiotrophoblast apoptosis and increased vascular permeability. These events can elicit pre-eclampsia-like syndrome that marks a high percentage of pregnancies when mothers areinfected with SARS-CoV-2. Our study raises important points relevant to SARSCoV- 2 mediated adverse pregnancy outcomes

    Constitutive psgl-1 correlates with cd30 and tcr pathways and represents a potential target for immunotherapy in anaplastic large t-cell lymphoma

    Get PDF
    Due to the high expression of P-selectin glycoprotein ligand-1 (PSGL-1) in lymphoprolif-erative disorders and in multiple myeloma, it has been considered as a potential target for humoral immunotherapy, as well as an immune checkpoint inhibitor in T-cells. By investigating the expression of SELPLG in 678 T-and B-cell samples by gene expression profiling (GEP), further supported by tissue microarray and immunohistochemical analysis, we identified anaplastic large T-cell lymphoma (ALCL) as constitutively expressing SELPLG at high levels. Moreover, GEP analysis in CD30+ ALCLs highlighted a positive correlation of SELPLG with TNFRSF8 (CD30-coding gene) and T-cell receptor (TCR)-signaling genes (LCK, LAT, SYK and JUN), suggesting that the common dysreg-ulation of TCR expression in ALCLs may be bypassed by the involvement of PSGL-1 in T-cell activation and survival. Finally, we evaluated the effects elicited by in vitro treatment with two anti-PSGL-1 antibodies (KPL-1 and TB5) on the activation of the complement system and induction of apoptosis in human ALCL cell lines. In conclusion, our data demonstrated that PSGL-1 is specifically enriched in ALCLs, altering cell motility and viability due to its involvement in CD30 and TCR signaling, and it might be considered as a promising candidate for novel immunotherapeutic approaches in ALCLs

    Differential capability of clinically employed dermal regeneration scaffolds to support vascularization for tissue bioengineering

    Get PDF
    The loss of skin integrity has always represented a major challenge for clinicians dealing with dermal defects, such as ulcers (diabetic, vascular and chronic), postoncologic resections (i.e., radical vulvectomy) or dermatologic disorders. The introduction in recent decades of acellular dermal matrices (ADMs) supporting the repair and restoration of skin functionality represented a significant step toward achieving clean wound repair before performing skin grafts. Hard-to-heal ulcers generally depend on local ischemia and nonadequate vascularization. In this context, one possible innovative approach could be the prevascularization of matrices with vessel-forming cells (inosculation). This paper presents a comparative analysis of the most widely used dermal templates, i.e., Integra® Bilayer Matrix Wound Dressing, PELNAC®, PriMatrix® Dermal Repair Scaffold, Endoform® Natural Dermal Template, and Myriad Matrix®, testing their ability to be colonized by human adult dermal microvascular endothelial cells (ADMECs) and to induce and support angiogenesis in vitro and in vivo. By in vitro studies, we demonstrated that Integra® and PELNAC® possess superior pro-adhesive and pro-angiogenetic properties. Animal models allowed us to demonstrate the ability of preseeded ADMECs on Integra® to promote the engraftment, integration and vascularization of ADMs at the site of application

    CD133 expression in placenta chorioangioma presenting as a giant asymptomatic mass

    Get PDF
    Background: Placental chorioangioma is the most common benign non-trophoblastic neoplasm of the placenta. Its clinical relevance lies in the size of the tumor since larger masses cause pregnancy complications, including an unfavorable neonatal outcome. Case presentation: We report the case of a 34-year-old second gravida and nullipara at the 35th week of gestation, admitted to the gynecological department for antibiotic-resistant fever. The cardiotocography performed during hospitalization showed an abnormal fetal pattern. A 2250 g newborn was delivered by cesarean section. No complications were observed during childbirth and postpartum was insignificant. On gross inspection a white fleshy intraparenchymal mass blooming on the maternal surface was noted; routinely stained sections revealed features consistent with chorioangioma with vascular channels lined by inconspicuous endothelial cells immunoreactive for CD31 and CD133. Focal expression of CD133 was also observed in placental villi. Discussion: CD133 expression indicated the presence of stem cells in chorioangioma, suggesting their possible role in the development of mesenchymal lesions including chorioangioma

    Protective and regenerative effects of a novel medical device against esophageal mucosal damage using in vitro and ex vivo models

    Get PDF
    Gastroesophageal reflux disease (GERD) is a common digestive disorder that causes esophagitis and injuries to the esophageal mucosa. GERD symptoms are recurrent during pregnancy and their treatment is focused on lifestyle changes and nonprescription medicines. The aim of this study was to characterize the mechanism of action of a new patented medical device, an oral formulation containing hyaluronic acid, rice extract, and amino acids dispersed in a bioadhesive polymer matrix, by assessing its protective effects in in vitro and ex vivo models of esophageal mucosa damage. Acidic bile salts and pepsin cocktail (BSC) added to CP-A and COLO-680 N esophagus cells were used as an in vitro GERD model to evaluate the binding capacities, anti-inflammatory effects and reparative properties of the investigational product (IP) in comparison to a viscous control. Our results showed that the IP prevents cell permeability and tight junction dysfunction induced by BSC. Furthermore, the IP was also able to down-regulate IL-6 and IL-8 mRNA expression induced by BSC stimulation and to promote tissue repair and wound healing. The results were confirmed by ex vivo experiments in excised rat esophagi through the quantification of Evans Blue permeability assay. These experiments provided evidence that the IP is able to bind to the human esophagus cells, preventing the damage caused by gastroesophageal reflux, showing potential anti-irritative, soothing, and reparative properties

    Protective and regenerative effects of a novel medical device against esophageal mucosal damage using in vitro and ex vivo models

    Get PDF
    Gastroesophageal reflux disease (GERD) is a common digestive disorder that causes esophagitis and injuries to the esophageal mucosa. GERD symptoms are recurrent during pregnancy and their treatment is focused on lifestyle changes and nonprescription medicines. The aim of this study was to characterize the mechanism of action of a new patented medical device, an oral formulation containing hyaluronic acid, rice extract, and amino acids dispersed in a bioadhesive polymer matrix, by assessing its protective effects in in vitro and ex vivo models of esophageal mucosa damage. Acidic bile salts and pepsin cocktail (BSC) added to CP-A and COLO-680 N esophagus cells were used as an in vitro GERD model to evaluate the binding capacities, anti-inflammatory effects and reparative properties of the investigational product (IP) in comparison to a viscous control. Our results showed that the IP prevents cell permeability and tight junction dysfunction induced by BSC. Furthermore, the IP was also able to down-regulate IL-6 and IL-8 mRNA expression induced by BSC stimulation and to promote tissue repair and wound healing. The results were confirmed by ex vivo experiments in excised rat esophagi through the quantification of Evans Blue permeability assay. These experiments provided evidence that the IP is able to bind to the human esophagus cells, preventing the damage caused by gastroesophageal reflux, showing potential anti-irritative, soothing, and reparative properties
    corecore