54 research outputs found

    A study of the transverse fluctuations of hadronic showers in the NOMAD electromagnetic calorimeter

    Get PDF
    The transverse shower shape of the energy deposition of hadrons in the NOMAD lead glass calorimeter has been studied by exposing a prototype of this calorimeter to pion test beams of various momenta and incident angles. Large event to event fluctuations in the shower shape and significant energy depositions far from the incident hadron were observed making it difficult to associate all the deposited energy to the incident hadron that caused it. Since in the NOMAD detector the momenta of charged hadrons are measured by a magnetic spectrometer, such an association is necessary to be able to subtract from the calorimeter all the energy caused by the observed charged hadrons in order to avoid double counting. Probability functions based on the measurements have been developed to describe fluctuations of the lateral shower shape.\ Starting from these functions, an algorithm is developed for identifying the energy deposition associated to a charged hadron.\ The identification and separation of overlapping showers based on these functions is also discussed. The Monte Carlo simulation of the calorimeter reproduces the test beam data well therefore allowing the application of the algorithm at angles and momenta not studied in the test beam

    The NOMAD experiment at the CERN SPS

    Get PDF
    The NOMAD experiment is a short base-line search for ΜΌ→Μτ\nu_{\mu}\rightarrow \nu_{\tau} oscillations in the CERN neutrino beam. The Μτ\nu_{\tau}'s are searched for through their charged-current interactions followed by the observation of the resulting τ−\tau^{-} through its electronic, muonic or hadronic decays. These decays are recognized using kinematical criteria necessitating the use of a light target which enables the reconstruction of individual particles produced in the neutrino interactions. This paper describes the various components of the NOMAD detector: the target and muon drift chambers, the electromagnetic and hadronic calorimeters, the preshower and transition radiation detectors, and the veto and trigger scintillation counters. The beam and data acquisition system are also described. The quality of the reconstruction of individual particles is demonstrated through the ability of NOMAD to observe Ks0^0_{\rm s}'s, Λ0\Lambda^0's and π0\pi^0's. Finally, the observation of τ−\tau^{-} through its electronic decay being one of the most promising channels in the search, the identification of electrons in NOMAD is discussed

    8th International Workshop on Neutrino Telescopes

    No full text

    4th International Workshop on Neutrino Telescopes

    No full text

    5th International Workshop on Neutrino Telescopes

    No full text
    • 

    corecore