24 research outputs found

    A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification

    Get PDF
    Alternative splicing is widely acknowledged to be a crucial regulator of gene expression and is a key contributor to both normal developmental processes and disease states. While cost-effective and accurate for quantification, short-read RNA-seq lacks the ability to resolve full-length transcript isoforms despite increasingly sophisticated computational methods. Long-read sequencing platforms such as Pacific Biosciences (PacBio) and Oxford Nanopore (ONT) bypass the transcript reconstruction challenges of short-reads. Here we describe TALON, the ENCODE4 pipeline for analyzing PacBio cDNA and ONT direct-RNA transcriptomes. We apply TALON to three human ENCODE Tier 1 cell lines and show that while both technologies perform well at full-transcript discovery and quantification, each technology has its distinct artifacts. We further apply TALON to mouse cortical and hippocampal transcriptomes and find that a substantial proportion of neuronal genes have more reads associated with novel isoforms than annotated ones. The TALON pipeline for technology-agnostic, long-read transcriptome discovery and quantification tracks both known and novel transcript models as well as expression levels across datasets for both simple studies and larger projects such as ENCODE that seek to decode transcriptional regulation in the human and mouse genomes to predict more accurate expression levels of genes and transcripts than possible with short-reads alone

    A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification

    Get PDF
    Alternative splicing is widely acknowledged to be a crucial regulator of gene expression and is a key contributor to both normal developmental processes and disease states. While cost-effective and accurate for quantification, short-read RNA-seq lacks the ability to resolve full-length transcript isoforms despite increasingly sophisticated computational methods. Long-read sequencing platforms such as Pacific Biosciences (PacBio) and Oxford Nanopore (ONT) bypass the transcript reconstruction challenges of short-reads. Here we describe TALON, the ENCODE4 pipeline for analyzing PacBio cDNA and ONT direct-RNA transcriptomes. We apply TALON to three human ENCODE Tier 1 cell lines and show that while both technologies perform well at full-transcript discovery and quantification, each technology has its distinct artifacts. We further apply TALON to mouse cortical and hippocampal transcriptomes and find that a substantial proportion of neuronal genes have more reads associated with novel isoforms than annotated ones. The TALON pipeline for technology-agnostic, long-read transcriptome discovery and quantification tracks both known and novel transcript models as well as expression levels across datasets for both simple studies and larger projects such as ENCODE that seek to decode transcriptional regulation in the human and mouse genomes to predict more accurate expression levels of genes and transcripts than possible with short-reads alone

    Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology.

    Get PDF
    The majority of Alzheimer’s disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aβ under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aβ sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression. In addition, when exon 14 encoding the Aβ sequence was flanked by loxP sites we show that Cre-mediated excision of exon 14 ablates hAβ expression, rescues cognition and reduces the formation of PAS granules

    Systematic assessment of long-read RNA-seq methods for transcript identification and quantification

    Get PDF
    The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. The consortium generated over 427 million long-read sequences from cDNA and direct RNA datasets, encompassing human, mouse, and manatee species, using different protocols and sequencing platforms. These data were utilized by developers to address challenges in transcript isoform detection and quantification, as well as de novo transcript isoform identification. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. When aiming to detect rare and novel transcripts or when using reference-free approaches, incorporating additional orthogonal data and replicate samples are advised. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis

    Systematic assessment of long-read RNA-seq methods for transcript identification and quantification

    Get PDF
    The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis

    Multi-tissue integrative analysis of personal epigenomes

    Get PDF
    Evaluating the impact of genetic variants on transcriptional regulation is a central goal in biological science that has been constrained by reliance on a single reference genome. To address this, we constructed phased, diploid genomes for four cadaveric donors (using long-read sequencing) and systematically charted noncoding regulatory elements and transcriptional activity across more than 25 tissues from these donors. Integrative analysis revealed over a million variants with allele-specific activity, coordinated, locus-scale allelic imbalances, and structural variants impacting proximal chromatin structure. We relate the personal genome analysis to the ENCODE encyclopedia, annotating allele- and tissue-specific elements that are strongly enriched for variants impacting expression and disease phenotypes. These experimental and statistical approaches, and the corresponding EN-TEx resource, provide a framework for personalized functional genomics

    Peromyscus WGCNA supplement

    No full text
    corecore