14 research outputs found

    Parkinsonian motor impairment predicts personality domains related to genetic risk and treatment outcomes in schizophrenia

    Get PDF
    Identifying endophenotypes of schizophrenia is of critical importance and has profound implications on clinical practice. Here we propose an innovative approach to clarify the mechanims through which temperament and character deviance relates to risk for schizophrenia and predict long-term treatment outcomes. We recruited 61 antipsychotic naïve subjects with chronic schizophrenia, 99 unaffected relatives, and 68 healthy controls from rural communities in the Central Andes. Diagnosis was ascertained with the Schedules of Clinical Assessment in Neuropsychiatry; parkinsonian motor impairment was measured with the Unified Parkinson\u27s Disease Rating Scale; mesencephalic parenchyma was evaluated with transcranial ultrasound; and personality traits were assessed using the Temperament and Character Inventory. Ten-year outcome data was available for ~40% of the index cases. Patients with schizophrenia had higher harm avoidance and self-transcendence (ST), and lower reward dependence (RD), cooperativeness (CO), and self-directedness (SD). Unaffected relatives had higher ST and lower CO and SD. Parkinsonism reliably predicted RD, CO, and SD after correcting for age and sex. The average duration of untreated psychosis (DUP) was over 5 years. Further, SD was anticorrelated with DUP and antipsychotic dosing at follow-up. Baseline DUP was related to antipsychotic dose-years. Further, \u27explosive/borderline\u27, \u27methodical/obsessive\u27, and \u27disorganized/schizotypal\u27 personality profiles were associated with increased risk of schizophrenia. Parkinsonism predicts core personality features and treatment outcomes in schizophrenia. Our study suggests that RD, CO, and SD are endophenotypes of the disease that may, in part, be mediated by dopaminergic function. Further, SD is an important determinant of treatment course and outcome

    Parkinsonian motor impairment predicts personality domains related to genetic risk and treatment outcomes in schizophrenia

    Get PDF
    Identifying endophenotypes of schizophrenia is of critical importance and has profound implications on clinical practice. Here we propose an innovative approach to clarify the mechanims through which temperament and character deviance relates to risk for schizophrenia and predict long-term treatment outcomes. We recruited 61 antipsychotic naïve subjects with chronic schizophrenia, 99 unaffected relatives, and 68 healthy controls from rural communities in the Central Andes. Diagnosis was ascertained with the Schedules of Clinical Assessment in Neuropsychiatry; parkinsonian motor impairment was measured with the Unified Parkinson’s Disease Rating Scale; mesencephalic parenchyma was evaluated with transcranial ultrasound; and personality traits were assessed using the Temperament and Character Inventory. Ten-year outcome data was available for ~40% of the index cases. Patients with schizophrenia had higher harm avoidance and self-transcendence (ST), and lower reward dependence (RD), cooperativeness (CO), and self-directedness (SD). Unaffected relatives had higher ST and lower CO and SD. Parkinsonism reliably predicted RD, CO, and SD after correcting for age and sex. The average duration of untreated psychosis (DUP) was over 5 years. Further, SD was anticorrelated with DUP and antipsychotic dosing at follow-up. Baseline DUP was related to antipsychotic dose-years. Further, ‘explosive/borderline’, ‘methodical/obsessive’, and ‘disorganized/schizotypal’ personality profiles were associated with increased risk of schizophrenia. Parkinsonism predicts core personality features and treatment outcomes in schizophrenia. Our study suggests that RD, CO, and SD are endophenotypes of the disease that may, in part, be mediated by dopaminergic function. Further, SD is an important determinant of treatment course and outcome

    Nitric oxide (NO) signaling as a potential therapeutic modality against psychostimulants

    No full text
    Abuse of psychostimulants presents a significant health and social problem worldwide. Traditionally, the dopaminergic system has received much attention for its role in the development and manifestation of addictive behavior. The identification of the close interaction between the dopaminergic and glutamatergic pathway and by extension the nitric oxide (NO) signaling pathway (the nitrergic system) have provided a broader scope on the mechanisms underlying the development of addictive behavior following exposure to cocaine and methamphetamine. NO signaling is associated with the acquisition and maintenance of several behavioral phenotypes induced by cocaine and methamphetamine (METH), as well as in METH-induced dopaminergic depletion. Because it appears that NO signaling influences response to reward, memory formation, and free radical-induced neurotoxicity, pharmacotherapies targeting NO signaling pathway may prove beneficial in the treatment of psychostimulants abuse

    The neuronal nitric oxide synthase (nNOS) gene contributes to the regulation of tyrosine hydroxylase (TH) by cocaine

    No full text
    Recently, we demonstrated that intact nitric oxide (NO) signaling is essential for the development of cocaine behavioral sensitization in adulthood [M.A. Balda, K.L. Anderson, Y. Itzhak, Differential role of the nNOS gene in the development of behavioral sensitization to cocaine in adolescent and adult B6;129S mice, Psychopharmacology (Berl) 200 (2008) 509–519]. Given the requirement of dopamine (DA) transmission in cocaine-induced behavioral sensitization and the interactions between NO and DA systems, the present study investigated the role of the neuronal nitric oxide synthase (nNOS) gene and the effect of cocaine on the expression of tyrosine hydroxylase (TH)-immunoreactive (-ir) neurons. Adult (postnatal day 80) wild type (WT) and nNOS knockout (KO) mice received saline or a sensitizing regimen of cocaine (20 mg/kg) for 5 days. After 24 h, TH immunoreactivity was assessed in the ventral tegmental area (VTA) and the dorsal striatum (dST) using stereology and Western blotting, respectively. We report that (a) nNOS KO mice express lower levels of TH-ir neurons in the VTA compared to WT counterparts, (b) cocaine administration to WT mice significantly increased striatal TH expression, and (c) the same cocaine administration to nNOS KO mice significantly decreased striatal TH expression. Thus, the nitrergic system may contribute to cocaine-induced behavioral sensitization by regulating dopaminergic neurotransmission

    Impairments in fear conditioning in mice lacking the nNOS gene

    No full text
    The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic plasticity, including the late phase of long-term potentiation (LTP) and formation of long-term memory (LTM). Evidence has implicated NO signaling in synaptic plasticity and LTM formation following fear conditioning, yet little is known about the role of the nNOS gene in fear learning. Using knockout (KO) mice with targeted mutation of the nNOS gene and their wild-type (WT) counterparts, the role of NO signaling in fear conditioning was investigated. Plasma levels of the stress hormone corticosterone were measured to determine the relationship between physiological and behavioral response to fear conditioning. Contextual fear learning was severely impaired in male and female nNOS KO mice compared with WT counterparts; cued fear learning was slightly impaired in nNOS KO mice. Sex-dependent differences in both contextual and cued fear learning were not observed in either genotype. Deficits in contextual fear learning in nNOS KO mice were partially overcome by multiple trainings. A relationship between increase in plasma corticosterone levels following footshock administration and the magnitude of contextual, but not cued freezing was also observed. Results suggest that the nNOS gene contributes more to optimal contextual fear learning than to cued fear learning, and therefore, inhibition of the nNOS enzyme may ameliorate context-dependent fear response
    corecore