406 research outputs found

    Exploring the Connected Brain by fNIRS: Human-to-Human Interactions Engineering

    Get PDF
    Functional Near Infrared Spectroscopy (fNIRS) is a relatively new neuroimaging technique adequate and useful for exploring neural activity in social contexts involving human interactions. Compared to functional Magnetic Resonance Imaging (fMRI), fNIRS is easy-to-use safe, noninvasive, silent, relatively low cost and portable, and applicable to subjects of all ages, thus resulting in a good option for ecological studies involving humans in their real-life context. Moreover, by using hyperscanning technique, fNIRS allows recording the hemodynamic cerebral activity of two interacting subjects in an ecological context or during a shared performance. Thus, moving from a simple analysis about each subject\u2019s neural response during joint actions towards more complex computations makes possible to investigate brain synchrony, that is the if and how one\u2019s brain activity is related to that of another interacting partner simultaneously recorded. Here, we discuss how connectivity analyses, with respect to both time and frequency domain procedures, permitted to deepen some aspects of inter-brain synchrony in relation to emotional closeness, and to highlight how concurrent, cooperative actions can lead to interpersonal synchrony and bond construction

    Cooperate or not cooperate EEG, autonomic, and behavioral correlates of ineffective joint strategies

    Get PDF
    Introduction: The neural activity in response to ineffective joint actions was explored in the present study. Subjects involved in a cooperative but frustrating task (poor performance as manipulated by an external feedback) were required to cooperate (T1) during an attentional task in a way to synchronize their responses and obtain better outcomes. Methods: We manipulated their strategies by providing false feedbacks (T2) signaling the incapacity to create a synergy, which was reinforced by a general negative evaluation halfway through the game. A control condition was provided (no cooperation required, T0) as well as a check for possible learning effect (time series analysis). The effects of the feedback in modulating subjects' behavioral performance and electrocortical activity were explored by means of brain oscillations (delta, theta, alpha, beta) and autonomic activity (heart rate, HR; skin conductance activity, SCR). Results: Results showed a specific pattern of behavioral, neural, and peripheral responses after the social feedback. In fact, within this condition, worse behavioral outcomes emerged, with longer response times with respect to the prefeedback one. In parallel, a specific right-lateralized effect was observed over the dorsolateral prefrontal cortex (DLPFC), with increased delta and theta power compared to the previous condition. Moreover, increased SCR was observed with respect to the first part. Conclusions: Two interpretations are put forward to explain the present findings: 1) the contribution of negative emotions in response to failing interactions or 2) a motivational disengagement toward goal-oriented cooperation elicited by frustrating evaluations

    Affective Synchrony and Autonomic Coupling during Cooperation : A Hyperscanning Study

    Get PDF
    Previous research highlighted that during social interactions people shape each other's emotional states by resonance mechanisms and synchronized autonomic patterns. Starting from the idea that joint actions create shared emotional experiences, in the present study a social bond was experimentally induced by making subjects cooperate with each other. Participants' autonomic system activity (electrodermal: Skin conductance level and response: SCL, SCR; cardiovascular indices: Heart rate: HR) was continuously monitored during an attentional couple game. The cooperative motivation was induced by presenting feedback which reinforced the positive outcomes of the intersubjective exchange. 24 participants coupled in 12 dyads were recruited. Intrasubject analyses revealed higher HR in the first part of the task, connoted by increased cognitive demand and arousing social dynamic, while intersubject analysis showed increased synchrony in electrodermal activity after the feedback. Such results encourage the use of hyperscanning techniques to assess emotional coupling in ecological and real-time paradigms

    When cooperation goes wrong : brain and behavioural correlates of ineffective joint strategies in dyads

    Get PDF
    Purpose: Human life is connoted by sophisticated interactions that involve not only single individuals, but larger social groups composed by members interacting each other. Cooperation secures a benefit to all the people engaged as well as important behaviors like helping, sharing, and acting prosocially. But what happens when the joint actions are not effective? Materials and method: In the present study, we asked 24 participants paired in 12 dyads to cooperate during an attentional task in a way to synchronize their responses and obtain better outcomes. In addition we tested inter-brain and cognitive strategy similarities between subjects. Then, we frustrated their strategies by providing false feedbacks signalling the incapacity to create a synergy, which was reinforced by a general negative evaluation halfway through the task. The effects of the feedback inmodulating subjects behavioural performance and brain responsiveness were explored by means of functional near-infrared spectroscopy (fNIRS). Results: Results showed a worsen performance after the negative feedback in the form of longer reaction times and a specifc pattern of brain activation involving th dorsolateral prefrontal cortex (DLPFC) and the superior frontal gyrus. The DLPFC showed increased O2Hb (oxy-haemoglobin) level after the feedback, compatible with the need for higher cognitive effort. In addition, fNIRS measures revealed a decreased inter-brain synchronicity in post-feedback condition for the dyad. Also, the representation of negative emotions in response to failing interactions was signalled by a right-lateralized effect. Conclusions: Results were interpreted at light of available knowledge on perceived self-efficacy and the implementation of common goals and strategies

    Two is better than one : the effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS

    Get PDF
    Inter-brain synchronization during joint actions is a core question in social neuroscience, and the differential contribution of intra- and inter-brain functional connectivity has yet to be clarified along with the role of psychological variables such as perceived self-efficacy. The cognitive performance and the neural activation underlying the execution of joint actions were recorded by functional Near-Infrared imaging during a synchronicity game. An 8-channel array of optodes was positioned over the frontal and prefrontal regions. During the task, the dyads received reinforcing feedback that was experimentally manipulated to induce adoption of common strategies. Intra- and inter-brain connectivity indices were computed along with an inter-brain/intra-brain connectivity index (ConIndex). Finally, correlation analyses were run to assess the relationship between behavioral and physiological levels. The results showed that the external feedback could modulate participant responses in both behavioral and neural components. After the reinforcing manipulation, there were faster response times and increased inter-brain connectivity, and ConIndex emerged primarily over the dorsolateral prefrontal cortex. Additionally, the presence of significant correlations between response times and inter-brain connectivity revealed that only the \u201ctwo-players connection\u201d may guarantee an efficient performance. The present study provides a significant contribution to the identification of intra- and inter-brain functional connectivity when social reinforcement is provided

    When brains dialogue by synchronized or unsynchronized languages : hyperscanning applications to neuromanagement

    Get PDF
    Neuromanagement deals with neuroscience methodological approaches to the management. A management construct is leadership, but objective psychophysiological data in support of it are still missing. The present pilot study aimed to apply the hyperscanning paradigm during a role-played employees' evaluation. Our purpose was to identify lexical and neuro/psychophysiological markers of leader-employee interactions. The sample consisted in paired manager-collaborator couples. Managers were required to use two different communication styles: authoritative vs. cooperative. A conversational analysis permitted to identify main topics to interpret data. Results showed that the interview was more arousing for the employee than the manager. Greater Delta and Theta EEG bands could denote positive valence of personal interactions and company mission topics. Autonomic measures (Skin Conductance Response, SCR and Heart Rate, HR) showed important information related to different leadership style. Results highlight the importance of applying neurosciences to organizational contexts exploring processes related to manager-employee dynamics and communicative style

    Continuous pulse advances in the negative ion source NIO1

    Full text link
    Consorzio RFX and INFN-LNL have designed, built and operated the compact radiofrequency negative ion source NIO1 (Negative Ion Optimization phase 1) with the aim of studying the production and acceleration of H- ions. In particular, NIO1 was designed to keep plasma generation and beam extraction continuously active for several hours. Since 2020 the production of negative ions at the plasma grid (the first grid of the acceleration system) has been enhanced by a Cs layer, deposited though active Cs evaporation in the source volume. For the negative ion sources applied to fusion neutral beam injectors, it is essential to keep the beam current and the fraction of co-extracted electrons stable for at least 1 h, against the consequences of Cs sputtering and redistribution operated by the plasma. The paper presents the latest results of the NIO1 source, in terms of caesiation process and beam performances during continuous (6{\div}7 h) plasma pulses. Due to the small dimensions of the NIO1 source (20 x (diam.)10 cm), the Cs density in the volume is high (10^15 \div 10^16 m^-3) and dominated by plasma-wall interaction. The maximum beam current density and minimum fraction of co-extracted electrons were respectively about 30 A/m^2 and 2. Similarly to what done in other negative ion sources, the plasma grid temperature in NIO1 was raised for the first time, up to 80 {\deg}C, although this led to a minimal improvement of the beam current and to an increase of the co-extracted electron current.Comment: 11 pages, 7 figures. Contributed paper for the 8th International symposium on Negative Ions, Beams and Sources - NIBS'22. Revision 1 of the preprint under evaluation at Journal of Instrumentation (JINST

    Dose-Related Effects of Repeated ETC-216 (Recombinant Apolipoprotein A-IMilano/1-Palmitoyl-2-Oleoyl Phosphatidylcholine Complexes) Administrations on Rabbit Lipid-Rich Soft Plaques In Vivo Assessment by Intravascular Ultrasound and Magnetic Resonance Imaging

    Get PDF
    ObjectivesThis study sought to evaluate in vivo the minimal dose of apolipoprotein (apo) A-IMilano phospholipid complex (recombinant apoA-IMilano and 1-palmitoyl-2-oleoyl phosphatidylcholine complexes [ETC-216]) able to induce atherosclerosis regression in a rabbit model of lipid-rich plaques.BackgroundA single high dose of recombinant apoA-IMilano has promoted atherosclerosis regression in animal models. More recently, regression of atherosclerosis was achieved in coronary patients by repeated infusions of ETC-216.MethodsThirty-six rabbits underwent perivascular injury at both carotid arteries, followed by a 1.5% cholesterol diet. After 90 days, rabbits were randomly divided into 6 groups and treated 5 times with vehicle or ETC-216 at 5, 10, 20, 40, or 150 mg/kg dose every 4 days. Carotid plaque changes were evaluated in vivo by intravascular ultrasound (IVUS) and magnetic resonance imaging (MRI), performed before and at the end of treatments. Magnetic resonance imaging scans were also recorded after administration of the second dose for rabbits infused with vehicle 40 or 150 mg/kg.ResultsAtheroma volume in vehicle-treated rabbits increased dramatically between the first and the second IVUS analyses (+26.53%), whereas in ETC-216–treated animals, a reduced progression at the lower doses and a significant regression at the higher doses, up to −6.83%, was detected. Results obtained by MRI analysis correlated significantly with those at IVUS (r = 0.706; p < 0.0001). The MRI evaluations after the second infusion established that a significant regression was achieved with only 2 administrations of the highest dose.ConclusionsThese results confirm the efficacy of ETC-216 for atherosclerosis treatment and provide guidance for dose selection and frequency to obtain a significant reduction of plaque volume
    • …
    corecore