678 research outputs found
IGR J11014-6103: a newly discovered pulsar wind nebula?
Context: IGRJ11014-6103 is one of the still unidentified hard X-ray INTEGRAL
sources, reported for the first time in the 4th IBIS/ISGRI catalog. Aims: We
investigated the nature of IGR J11014-6103 by carrying out a multiwavelength
analysis of the available archival observations performed in the direction of
the source. Methods: We present first the results of the timing and spectral
analysis of all the X-ray observations of IGR J11014-6103 carried out with
ROSAT, ASCA, Einstein, Swift, and XMM-Newton, and then use them to search for
possible counterparts to the source in the optical, infra-red, radio and
gamma-ray domain. Results: Our analysis revealed that IGR J11014-6103 is
comprised of three different X-ray emitting regions: a point-like source, an
extended object and a cometary-like "tail" (~4 arcmin). A possible radio
counterpart positionally coincident with the source was also identified.
Conclusions: Based on these results, we suggest that the emission from IGR
J11014-6103 is generated by a pulsar wind nebula produced by a high-velocity
pulsar. IGR J11014-6103 might be the first of these systems detected with
INTEGRAL IBIS/ISGRI.Comment: A&A accepted, 8 pages, 8 figures, 2 table
Optical properties of bulk high-entropy diborides for solar energy applications
So far, the studies regarding the innovative High-Entropy Borides (HEBs), which belong to the more general class of Ultra-high temperature ceramics (UHTCs), have been entirely confined to their fabrication or characterization from the microstructural, mechanical and oxidation resistance viewpoints. In this work, the optical properties of two members of HEBs, i.e. (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 and (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, are evaluated for the first time to assess their possible utilization in the thermal solar energy field. The bulk samples (96.5 % and 97.4 % dense, respectively) are obtained as single-phase products by Spark Plasma Sintering (1950 °C/20 min/20 MPa) starting from powders previously synthesized by Self-propagating High-temperature Synthesis (SHS). The optical characterization, whose results are discussed by comparing HEBs to the individual borides, shows that they are characterized by intrinsic spectral selectivity and low thermal emittance, resulting therefore interesting for high-temperature solar absorbers applications
Analysis of Petri Net Models through Stochastic Differential Equations
It is well known, mainly because of the work of Kurtz, that density dependent
Markov chains can be approximated by sets of ordinary differential equations
(ODEs) when their indexing parameter grows very large. This approximation
cannot capture the stochastic nature of the process and, consequently, it can
provide an erroneous view of the behavior of the Markov chain if the indexing
parameter is not sufficiently high. Important phenomena that cannot be revealed
include non-negligible variance and bi-modal population distributions. A
less-known approximation proposed by Kurtz applies stochastic differential
equations (SDEs) and provides information about the stochastic nature of the
process. In this paper we apply and extend this diffusion approximation to
study stochastic Petri nets. We identify a class of nets whose underlying
stochastic process is a density dependent Markov chain whose indexing parameter
is a multiplicative constant which identifies the population level expressed by
the initial marking and we provide means to automatically construct the
associated set of SDEs. Since the diffusion approximation of Kurtz considers
the process only up to the time when it first exits an open interval, we extend
the approximation by a machinery that mimics the behavior of the Markov chain
at the boundary and allows thus to apply the approach to a wider set of
problems. The resulting process is of the jump-diffusion type. We illustrate by
examples that the jump-diffusion approximation which extends to bounded domains
can be much more informative than that based on ODEs as it can provide accurate
quantity distributions even when they are multi-modal and even for relatively
small population levels. Moreover, we show that the method is faster than
simulating the original Markov chain
Processing and optical behavior of dense (Hf,Zr)B2 solid solutions for solar energy receivers
While individual borides and, more recently, quinary High Entropy Transition Metal Borides have been investigated, the fabrication and characterization of bulk binary to quaternary solid solutions are barely explored. In this work, dense (Hf0.5Zr0.5)B2 is produced by Spark Plasma Sintering (SPS) from powders prepared by Self-propagating High-temperature (SHS). SHS produced a multiphase product, whose secondary phases are fully converted into the desired diborides during the subsequent SPS step. Optical properties of (Hf0.5Zr0.5)B2 are evaluated for the first time with focus on the possible use as novel high-temperature solar thermal absorber, by hemispherical reflectance measurements and calculation of solar absorptance, temperature-dependent spectral selectivity and absorber opto-thermal efficiency at various solar concentration ratios. To optimize the material, a chemically etched surface texture was realized to modify the optical properties. The etched sample showed a higher solar absorptance (0.71) and a lower spectral selectivity than the unetched one, with consequent higher opto-thermal efficiency at all temperatures for solar concentration ratios 1000 ÷ 3000, while at lower concentration ratios and temperatures >1400 ÷ 1600 K, the unetched sample shows the highest efficiency. These results show the promising properties of binary diborides for solar thermal applications
A computational approach based on the colored Petri net formalism for studying multiple sclerosis
Multiple Sclerosis (MS) is an immune-mediated inflammatory disease of the Central Nervous System (CNS) which damages the myelin sheath enveloping nerve cells thus causing severe physical disability in patients. Relapsing Remitting Multiple Sclerosis (RRMS) is one of the most common form of MS in adults and is characterized by a series of neurologic symptoms, followed by periods of remission. Recently, many treatments were proposed and studied to contrast the RRMS progression. Among these drugs, daclizumab (commercial name Zinbryta), an antibody tailored against the Interleukin-2 receptor of T cells, exhibited promising results, but its efficacy was accompanied by an increased frequency of serious adverse events. Manifested side effects consisted of infections, encephalitis, and liver damages. Therefore daclizumab has been withdrawn from the market worldwide. Another interesting case of RRMS regards its progression in pregnant women where a smaller incidence of relapses until the delivery has been observed
Multiple sclerosis disease: A computational approach for investigating its drug interactions
Multiple Sclerosis (MS) is a chronic and potentially highly disabling disease that can cause permanent damage and deterioration of the central nervous system. In Europe it is the leading cause of non-traumatic disabilities in young adults, since more than 700,000 EU people suffer from MS. Although recent studies on MS pathophysiology have been performed, providing interesting results, MS remains a challenging disease. In this context, thanks to recent advances in software and hardware technologies, computational models and computer simulations are becoming appealing research tools to support scientists in the study of such disease. Motivated by this consideration, we propose in this paper a new model to study the evolution of MS in silico, and the effects of the administration of the daclizumab drug, taking into account also spatiality and temporality of the involved phenomena. Moreover, we show how the intrinsic symmetries of the model we have developed can be exploited to drastically reduce the complexity of its analysis
Investigating the relationship between interventions, contact patterns, and SARS-CoV-2Â transmissibility
Background: After a rapid upsurge of COVID-19 cases in Italy during the fall of 2020, the government introduced a three-tiered restriction system aimed at increasing physical distancing. The Ministry of Health, after periodic epidemiological risk assessments, assigned a tier to each of the 21 Italian regions and autonomous provinces. It is still unclear to what extent these different sets of measures altered the number of daily interactions and the social mixing patterns.Methods and findings: We conducted a survey between July 2020 and March 2021 to monitor changes in social contact patterns among individuals in the metropolitan city of Milan, Italy, which was hardly hit by the second wave of the COVID-19 pandemic. The number of daily contacts during periods characterized by different levels of restrictions was analyzed through negative binomial regression models and age-specific contact matrices were estimated under the different tiers of restrictions. By relying on the empirically estimated mixing patterns, we quantified relative changes in SARS-CoV-2 transmission potential associated with the different tiers.As tighter restrictions were implemented during the fall of 2020, a progressive reduction in the mean number of daily contacts recorded by study participants was observed: from 15.9 % under mild restrictions (yellow tier), to 41.8 % under strong restrictions (red tier). Higher restrictions levels were also found to increase the relative contribution of contacts occurring within the household. The SARS-CoV-2 reproduction number was estimated to decrease by 17.1 % (95 %CI: 1.5-30.1), 25.1 % (95 %CI: 13.0-36.0) and 44.7 % (95 %CI: 33.9-53.0) under the yellow, orange, and red tiers, respectively.Conclusions: Our results give an important quantification of the expected contribution of different restriction levels in shaping social contacts and decreasing the transmission potential of SARS-CoV-2. These estimates can find an operational use in anticipating the effect that the implementation of these tiered restriction can have on SARS-CoV-2 reproduction number under an evolving epidemiological situation
Mirror Position Determination for the Alignment of Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with
large apertures to map the faint Cherenkov light emitted in extensive air
showers onto their image sensors. Segmented reflectors fulfill these needs
using mass produced and light weight mirror facets. However, as the overall
image is the sum of the individual mirror facet images, alignment is important.
Here we present a method to determine the mirror facet positions on a segmented
reflector in a very direct way. Our method reconstructs the mirror facet
positions from photographs and a laser distance meter measurement which goes
from the center of the image sensor plane to the center of each mirror facet.
We use our method to both align the mirror facet positions and to feed the
measured positions into our IACT simulation. We demonstrate our implementation
on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and
implementation demonstratio
- …