36 research outputs found
Load shifting and peak clipping for reducing energy consumption in an indian university campus
This paper analyzes the intelligent use of time-varying electrical load via developing efficient energy utilization patterns using demand-side management (DSM) strategies. This approach helps distribution utilities decrease maximum demand and electrical energy billing costs. A case study of DSM implementation of electric energy utility for an educational building Alagappa Chettiar Government College of Engineering and Technology (ACGCET) campus was simulated. The new optimum energy load model was established for peak and off-peak periods from the system's existing load profile using peak clipping and load shifting DSM techniques. The result reflects a significant reduction in maximum demand from 189 kW to 170 kW and a reduction in annual electricity billing cost from 10,200 (approximately 10%) in the upgraded system. This work highlights the importance of time of day (TOD) tariff structure consumers that aid reduction in their distribution system's maximum demand and demand charges. Copyright
Permeability and consolidation behavior of fly ashes
A knowledge of permeability and consolidation is essential in a number of engineering problems such as settlement, seepage, and stability of the structures. Since fly ash is used very widely for several geotechnical applications, there is a need to understand its permeability and consolidation behavior. This paper presents a detailed study conducted on two Indian fly ashes. It brings out the role of chemical composition (free lime) on the permeability and consolidation behavior of fly ashes. It is found that the permeability values computed based on grain-size distribution agree well with those obtained based on test data
Leaching Behavior of Indian Fly Ahes by an Oedometer Method
Thermal power stations use pulverized coal as fuel, producing enormous quantities of ash as a by-product of combustion. Currently, with very low utilization of the ash produced, the ash deposits at the thermal power stations are increasing rapidly. The disposal problem is expected to become alarming due to the limited space available for ash disposal near most thermal power stations. Among the various applications available for the use of fly ash, geotechnical application offers opportunity for its bulk utilization. However, the possibility of ground and surface water contamination due to the leaching of toxic elements present in the fly ash needs to be addressed. This paper describes a study carried out on two Indian fly ashes. It is found that pH is the controlling factor in the leaching behavior of fly ashes