157 research outputs found

    Comparative Analysis of Cytokinesis in Budding Yeast, Fission Yeast and Animal Cells

    Get PDF
    AbstractCytokinesis is a temporally and spatially regulated process through which the cellular constituents of the mother cell are partitioned into two daughter cells, permitting an increase in cell number. When cytokinesis occurs in a polarized cell it can create daughters with distinct fates. In eukaryotes, cytokinesis is carried out by the coordinated action of a cortical actomyosin contractile ring and targeted membrane deposition. Recent use of model organisms with facile genetics and improved light-microscopy methods has led to the identification and functional characterization of many proteins involved in cytokinesis. To date, this analysis indicates that some of the basic components involved in cytokinesis are conserved from yeast to humans, although their organization into functional machinery that drives cytokinesis and the associated regulatory mechanisms bear species-specific features. Here, we briefly review the current status of knowledge of cytokinesis in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and animal cells, in an attempt to highlight both the common and the unique features. Although these organisms diverged from a common ancestor about a billion years ago, there are eukaryotes that are far more divergent. To evaluate the overall evolutionary conservation of cytokinesis, it will be necessary to include representatives of these divergent branches. Nevertheless, the three species discussed here provide substantial mechanistic diversity

    Nuc2p, a Subunit of the Anaphase-Promoting Complex, Inhibits Septation Initiation Network Following Cytokinesis in Fission Yeast

    Get PDF
    In most cell types, mitosis and cytokinesis are tightly coupled such that cytokinesis occurs only once per cell cycle. The fission yeast Schizosaccharomyces pombe divides using an actomyosin-based contractile ring and is an attractive model for the study of the links between mitosis and cytokinesis. In fission yeast, the anaphase-promoting complex/cyclosome (APC/C) and the septation initiation network (SIN), a spindle pole body (SPB)–associated GTPase-driven signaling cascade, function sequentially to ensure proper coordination of mitosis and cytokinesis. Here, we find a novel interplay between the tetratricopeptide repeat (TPR) domain–containing subunit of the APC/C, Nuc2p, and the SIN, that appears to not involve other subunits of the APC/C. Overproduction of Nuc2p led to an increase in the presence of multinucleated cells, which correlated with a defect in actomyosin ring maintenance and localization of the SIN component protein kinases Cdc7p and Sid1p to the SPBs, indicative of defective SIN signaling. Conversely, loss of Nuc2p function led to increased SIN signaling, characterized by the persistent localization of Cdc7p and Sid1p on SPBs and assembly of multiple actomyosin rings and division septa. Nuc2p appears to function independently of the checkpoint with FHA and ring finger (CHFR)–related protein Dma1p, a known inhibitor of the SIN in fission yeast. Genetic and biochemical analyses established that Nuc2p might influence the nucleotide state of Spg1p GTPase, a key regulator of the SIN. We propose that Nuc2p, by inhibiting the SIN after cell division, prevents further deleterious cytokinetic events, thereby contributing to genome stability

    Myosin-II reorganization during mitosis is controlled temporally by its dephosphorylation and spatially by Mid1 in fission yeast

    Get PDF
    Cytokinesis in many eukaryotes requires an actomyosin contractile ring. Here, we show that in fission yeast the myosin-II heavy chain Myo2 initially accumulates at the division site via its COOH-terminal 134 amino acids independently of F-actin. The COOH-terminal region can access to the division site at early G2, whereas intact Myo2 does so at early mitosis. Ser1444 in the Myo2 COOH-terminal region is a phosphorylation site that is dephosphorylated during early mitosis. Myo2 S1444A prematurely accumulates at the future division site and promotes formation of an F-actin ring even during interphase. The accumulation of Myo2 requires the anillin homologue Mid1 that functions in proper ring placement. Myo2 interacts with Mid1 in cell lysates, and this interaction is inhibited by an S1444D mutation in Myo2. Our results suggest that dephosphorylation of Myo2 liberates the COOH-terminal region from an intramolecular inhibition. Subsequently, dephosphorylated Myo2 is anchored by Mid1 at the medial cortex and promotes the ring assembly in cooperation with F-actin

    Equatorial assembly of the cell-division actomyosin ring in the absence of cytokinetic spatial cues

    Get PDF
    The position of the division site dictates the size and fate of daughter cells in many organisms. In animal cells, division-site placement involves overlapping mechanisms, including signaling from the central spindle microtubules, astral microtubules, and spindle poles and through polar contractions [1, 2, 3]. In fission yeast, division-site positioning requires overlapping mechanisms involving the anillin-related protein Mid1 and the tip complex (comprising the Kelch-repeat protein Tea1, the Dyrk-kinase Pom1, and the SH3-domain protein Tea4) [4, 5, 6, 7, 8, 9, 10, 11]. In addition to these factors, cell shape has also been shown to participate in the maintenance of the position of the actomyosin ring [12, 13, 14]. The first principles guiding actomyosin ring placement, however, have not been elucidated in any organism. Because actomyosin ring positioning, ring assembly, and cell morphogenesis are genetically separable in fission yeast, we have used it to derive actomyosin ring placement mechanisms from first principles. We report that, during ring assembly in the absence of cytokinetic cues (anillin-related Mid1 and tip-complex proteins), actin bundles follow the path of least curvature and assemble actomyosin rings in an equatorial position in spherical protoplasts and along the long axis in cylindrical cells and compressed protoplasts. The equatorial position of rings is abolished upon treatment of protoplasts with an actin-severing compound or by slowing down actin polymerization. We propose that the physical properties of actin filaments/bundles play key roles in actomyosin ring assembly and positioning, and that key cytokinetic molecules may modulate the length of actin filaments to promote ring assembly along the short axis

    Steric hindrance in the upper 50 kDa domain of the motor Myo2p leads to cytokinesis defects in fission yeast

    Get PDF
    Cytokinesis in many eukaryotes requires a contractile actomyosin ring that is placed at the division site. In fission yeast, which is an attractive organism for the study of cytokinesis, actomyosin ring assembly and contraction requires the myosin II heavy chain Myo2p. Although myo2-E1, a temperature-sensitive mutant defective in the upper 50 kDa domain of Myo2p, has been studied extensively, the molecular basis of the cytokinesis defect is not understood. Here, we isolate myo2-E1-Sup2, an intragenic suppressor that contains the original mutation in myo2-E1 (G345R) and a second mutation in the upper 50 kDa domain (Y297C). Unlike myo2-E1-Sup1, a previously characterized myo2-E1 suppressor, myo2-E1-Sup2 reverses actomyosin ring contraction defects in vitro and in vivo. Structural analysis of available myosin motor domain conformations suggests that a steric clash in myo2-E1, which is caused by the replacement of a glycine with a bulky arginine, is relieved in myo2-E1-Sup2 by mutation of a tyrosine to a smaller cysteine. Our work provides insight into the function of the upper 50 kDa domain of Myo2p, informs a molecular basis for the cytokinesis defect in myo2-E1, and may be relevant to the understanding of certain cardiomyopathies

    MADG: Margin-based Adversarial Learning for Domain Generalization

    Full text link
    Domain Generalization (DG) techniques have emerged as a popular approach to address the challenges of domain shift in Deep Learning (DL), with the goal of generalizing well to the target domain unseen during the training. In recent years, numerous methods have been proposed to address the DG setting, among which one popular approach is the adversarial learning-based methodology. The main idea behind adversarial DG methods is to learn domain-invariant features by minimizing a discrepancy metric. However, most adversarial DG methods use 0-1 loss based HΔH\mathcal{H}\Delta\mathcal{H} divergence metric. In contrast, the margin loss-based discrepancy metric has the following advantages: more informative, tighter, practical, and efficiently optimizable. To mitigate this gap, this work proposes a novel adversarial learning DG algorithm, MADG, motivated by a margin loss-based discrepancy metric. The proposed MADG model learns domain-invariant features across all source domains and uses adversarial training to generalize well to the unseen target domain. We also provide a theoretical analysis of the proposed MADG model based on the unseen target error bound. Specifically, we construct the link between the source and unseen domains in the real-valued hypothesis space and derive the generalization bound using margin loss and Rademacher complexity. We extensively experiment with the MADG model on popular real-world DG datasets, VLCS, PACS, OfficeHome, DomainNet, and TerraIncognita. We evaluate the proposed algorithm on DomainBed's benchmark and observe consistent performance across all the datasets

    Curvature-induced expulsion of actomyosin bundles during cytokinetic ring contraction

    Get PDF
    Many eukaryotes assemble a ring-shaped actomyosin network that contracts to drive cytokinesis. Unlike actomyosin in sarcomeres, which cycles through contraction and relaxation, the cytokinetic ring disassembles during contraction through an unknown mechanism. Here we find in Schizosaccharomyces japonicus and Schizosaccharomyces pombe that, during actomyosin ring contraction, actin filaments associated with actomyosin rings are expelled as micron-scale bundles containing multiple actomyosin ring proteins. Using functional isolated actomyosin rings we show that expulsion of actin bundles does not require continuous presence of cytoplasm. Strikingly, mechanical compression of actomyosin rings results in expulsion of bundles predominantly at regions of high curvature. Our work unprecedentedly reveals that the increased curvature of the ring itself promotes its disassembly. It is likely that such a curvature-induced mechanism may operate in disassembly of other contractile networks
    corecore