4 research outputs found

    Self-Reported Complaints as Prognostic Markers for Outcome After Mild Traumatic Brain Injury in Elderly:A Machine Learning Approach

    Get PDF
    Self-reported complaints are common after mild traumatic brain injury (mTBI). Particularly in the elderly with mTBI, the pre-injury status might play a relevant role in the recovery process. In most mTBI studies, however, pre-injury complaints are neither analyzed nor are the elderly included. Here, we aimed to identify which individual pre- and post-injury complaints are potential prognostic markers for incomplete recovery (IR) in elderly patients who sustained an mTBI. Since patients report many complaints across several domains that are strongly related, we used an interpretable machine learning (ML) approach to robustly deal with correlated predictors and boost classification performance. Pre- and post-injury levels of 20 individual complaints, as self-reported in the acute phase, were analyzed. We used data from two independent studies separately: UPFRONT study was used for training and validation and ReCONNECT study for independent testing. Functional outcome was assessed with the Glasgow Outcome Scale Extended (GOSE). We dichotomized functional outcome into complete recovery (CR; GOSE = 8) and IR (GOSE ≤ 7). In total 148 elderly with mTBI (median age: 67 years, interquartile range [IQR]: 9 years; UPFRONT: N = 115; ReCONNECT: N = 33) were included in this study. IR was observed in 74 (50%) patients. The classification model (IR vs. CR) achieved a good performance (the area under the receiver operating characteristic curve [ROC-AUC] = 0.80; 95% CI: 0.74–0.86) based on a subset of only 8 out of 40 pre- and post-injury complaints. We identified increased neck pain (p = 0.001) from pre- to post-injury as the strongest predictor of IR, followed by increased irritability (p = 0.011) and increased forgetfulness (p = 0.035) from pre- to post-injury. Our findings indicate that a subset of pre- and post-injury physical, emotional, and cognitive complaints has predictive value for determining long-term functional outcomes in elderly patients with mTBI. Particularly, post-injury neck pain, irritability, and forgetfulness scores were associated with IR and should be assessed early. The application of an ML approach holds promise for application in self-reported questionnaires to predict outcomes after mTBI

    Electroencephalography, Magnetoencephalography, and Cognitive Reserve:A Systematic Review

    Get PDF
    OBJECTIVE: Cognitive reserve (CR) is the capacity to adapt to (future) brain damage without any or only minimal clinical symptoms. The underlying neuroplastic mechanisms remain unclear. Electrocorticography (ECOG), electroencephalography (EEG), and magnetoencephalography (MEG) may help elucidate the brain mechanisms underlying CR, as CR is thought to be related to efficient utilization of remaining brain resources. The purpose of this systematic review is to collect, evaluate, and synthesize the findings on neural correlates of CR estimates using ECOG, EEG, and MEG. METHOD: We examined articles that were published from the first standardized definition of CR. Eleven EEG and five MEG cross-sectional studies met the inclusion criteria: They concerned original research, analyzed (M)EEG in humans, used a validated CR estimate, and related (M)EEG to CR. Quality assessment was conducted using an adapted form of the Newcastle-Ottawa scale. No ECOG study met the inclusion criteria. RESULTS: A total of 1383 participants from heterogeneous patient, young and older healthy groups were divided into three categories by (M)EEG methodology: Eight (M)EEG studies employed event-related fields or potentials, six studies analyzed brain oscillations at rest (of which one also analyzed a cognitive task), and three studies analyzed brain connectivity. Various CR estimates were employed and all studies compared different (M)EEG measures and CR estimates. Several associations between (M)EEG measures and CR estimates were observed. CONCLUSION: Our findings support that (M)EEG measures are related to CR estimates, particularly in healthy individuals. However, the character of this relationship is dependent on the population and task studied, warranting further studies

    Effects of Mild Traumatic Brain Injury on Resting State Brain Network Connectivity in Older Adults

    Get PDF
    Older age is associated with worsened outcome after mild traumatic brain injury (mTBI) and a higher risk of developing persistent post-traumatic complaints. However, the effects of mTBI sequelae on brain connectivity at older age and their association with post-traumatic complaints remain understudied. We analyzed multi-echo resting-state functional magnetic resonance imaging data from 25 older adults with mTBI (mean age: 68 years, SD: 5 years) in the subacute phase (mean injury to scan interval: 38 days, SD: 9 days) and 20 age-matched controls. Severity of complaints (e.g. fatigue, dizziness) was assessed using self-reported questionnaires. Group independent component analysis was used to identify intrinsic connectivity networks (ICNs). The effects of group and severity of complaints on ICNs were assessed using spatial maps intensity (SMI) as a measure of within-network connectivity, and (static) functional network connectivity (FNC) as a measure of between-network connectivity. Patients indicated a higher total severity of complaints than controls. Regarding SMI measures, we observed hyperconnectivity in left-mid temporal gyrus (cognitive-language network) and hypoconnectivity in the right-fusiform gyrus (visual-cerebellar network) that were associated with group. Additionally, we found interaction effects for SMI between severity of complaints and group in the visual(-cerebellar) domain. Regarding FNC measures, no significant effects were found. In older adults, changes in cognitive-language and visual(-cerebellar) networks are related to mTBI. Additionally, group-dependent associations between connectivity within visual(-cerebellar) networks and severity of complaints might indicate post-injury (mal)adaptive mechanisms, which could partly explain post-traumatic complaints (such as dizziness and balance disorders) that are common in older adults during the subacute phase. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11682-022-00662-5
    corecore