4 research outputs found
IoT protocols, architectures, and applications
The proliferation of embedded systems, wireless technologies, and Internet protocols have made it possible for the Internet-of-things (IoT) to bridge the gap between the physical and the virtual world and thereby enabling monitoring and control of the physical environment by data processing systems. IoT refers to the inter-networking of everyday objects that are equipped with sensing, computing, and communication capabilities. These networks can collaborate to autonomously solve a variety of tasks. Due to the very diverse set of applications and application requirements, there is no single communication technology that is able to provide cost-effective and close to optimal performance in all scenarios. In this chapter, we report on research carried out on a selected number of IoT topics: low-power wide-area networks, in particular, LoRa and narrow-band IoT (NB-IoT); IP version 6 over IEEE 802.15.4 time-slotted channel hopping (6TiSCH); vehicular antenna design, integration, and processing; security aspects for vehicular networks; energy efficiency and harvesting for IoT systems; and software-defined networking/network functions virtualization for (SDN/NFV) IoT
Enhancing Security for IoT-Based Smart Renewable Energy Remote Monitoring Systems
Renewable energy is an essential solution for addressing climate change, providing sustainable options that are vital for a more environmentally friendly future. Integrating information technology (IT) into renewable energy systems has driven remarkable progress, enhanced efficiency, and enabled remote monitoring. Nevertheless, integrating IT into these systems dramatically increases their vulnerability to cyber threats and potential attacks. This study thoroughly investigates the enhancement of security measures in an IoT-based solar energy remote monitoring system. The research integrates advanced technologies, including Advanced Encryption Standard (AES), myRIO board, and NI’s SystemLink Cloud platform, to enhance data security in smart solar energy monitoring systems. Emphasizing AES encryption ensures secure information exchange between the myRIO board and the computer. NI’s SystemLink Cloud offers a user-friendly interface for real-time monitoring of critical solar system parameters, supported by robust security measures such as HTTPS encryption and access control. This study sets higher data protection standards in smart energy systems by promoting advanced encryption and secure cloud infrastructures. The approach involves seamlessly integrating renewable energy sources with IT innovations while prioritizing proactive measures to strengthen solar energy system security
ODIN IVR-Interactive Solution for Emergency Calls Handling
Human interaction in natural language with computer systems has been a prime focus of research, and the field of conversational agents (including chatbots and Interactive Voice Response (IVR) systems) has evolved significantly since 2009, with a major boost in 2016, especially for industrial solutions. Emergency systems are crucial elements of today’s societies that can benefit from the advantages of intelligent human–computer interaction systems. In this paper, we present two solutions for human-to-computer emergency systems with critical deadlines that use a multi-layer FreeSwitch IVR solution and the Botpress chatbot platform. We are the pioneers in Romania who designed and implemented such a solution, which was evaluated in terms of performance and resource management concerning Quality of Service (QoS). Additionally, we assessed our Proof of Concept (PoC) with real data as part of the system for real-time Romanian transcription of speech and recognition of emotional states within emergency calls. Based on our feasibility research, we concluded that the telephony IVR best fits the requirements and specifications of the national 112 system, with the presented PoC ready to be integrated into the Romanian emergency system
ODIN IVR-Interactive Solution for Emergency Calls Handling
Human interaction in natural language with computer systems has been a prime focus of research, and the field of conversational agents (including chatbots and Interactive Voice Response (IVR) systems) has evolved significantly since 2009, with a major boost in 2016, especially for industrial solutions. Emergency systems are crucial elements of today’s societies that can benefit from the advantages of intelligent human–computer interaction systems. In this paper, we present two solutions for human-to-computer emergency systems with critical deadlines that use a multi-layer FreeSwitch IVR solution and the Botpress chatbot platform. We are the pioneers in Romania who designed and implemented such a solution, which was evaluated in terms of performance and resource management concerning Quality of Service (QoS). Additionally, we assessed our Proof of Concept (PoC) with real data as part of the system for real-time Romanian transcription of speech and recognition of emotional states within emergency calls. Based on our feasibility research, we concluded that the telephony IVR best fits the requirements and specifications of the national 112 system, with the presented PoC ready to be integrated into the Romanian emergency system