3 research outputs found

    Epigenetic dysregulation of eukaryotic initiation factor 3 subunit E (eIF3E) by lysine methyltransferase REIIBP confers a pro-inflammatory phenotype in t(4;14) myeloma

    Get PDF
    REIIBP is a lysine methyltransferase aberrantly expressed through alternative promoter usage of NSD2 locus in t(4;14)-translocated multiple myeloma (MM). Clinically, t(4;14) translocation is an adverse prognostic factor found in approximately 15% of MM patients. The contribution of REIIBP relative to other NSD2 isoforms as a dependency gene in t(4;14)-translocated MM remains to be evaluated. Here, we demonstrated that despite homology with NSD2, REIIBP displayed distinct substrate specificity by preferentially catalyzing H3K4me3 and H3K27me3, with little activity on H3K36me2. Furthermore, REIIBP was regulated through microRNA by EZH2 in a Dicer-dependent manner, exemplifying a role of REIIBP in SET-mediated H3K27me3. Chromatin immunoprecipitation sequencing revealed chromatin remodeling characterized by changes in genome-wide and loci-specific occupancy of these opposing histone marks, allowing a bidirectional regulation of its target genes. Transcriptomics indicated that REIIBP induced a pro-inflammatory gene signature through upregulation of TLR7, which in turn led to B-cell receptor-independent activation of BTK and driving NFkB-mediated production of cytokines such as IL-6. Activation of this pathway is targetable using Ibrutinib and partially mitigated bortezomib resistance in a REIIBP xenograft model. Mechanistically, REIIBP upregulated TLR7 through eIF3E, and this relied on eIF3E RNA-binding function instead of its canonical protein synthesis activity, as demonstrated by direct binding to the 3’UTR of TLR7 mRNA. Altogether, we provided a rationale that co-existence of different NSD2 isoforms induced diversified oncogenic programs that should be considered in the strategies for t(4;14)-targeted therapy

    Super enhancer-mediated upregulation of HJURP promotes growth and survival of t(4;14)-positive multiple myeloma

    No full text
    Multiple myeloma is an incurable malignancy with marked clinical and genetic heterogeneity. The cytogenetic abnormality t(4;14) (p16.3;q32.3) confers aggressive behavior in multiple myeloma. Recently, essential oncogenic drivers in a wide range of cancers have been shown to be controlled by super-enhancers (SE). We used chromatin immunoprecipitation sequencing of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs in t(4;14)-translocated multiple myeloma. The histone chaperone HJURP was aberrantly overexpressed in t(4;14)-positive multiple myeloma due to transcriptional activation by a distal SE induced by the histone lysine methyltransferase NSD2. Silencing of HJURP with short hairpin RNA or CRISPR interference of SE function impaired cell viability and led to apoptosis. Conversely, HJURP overexpression promoted cell proliferation and abrogated apoptosis. Mechanistically, the NSD2/BRD4 complex positively coregulated HJURP transcription by binding the promoter and active elements of its SE. In summary, this study introduces SE profiling as an efficient approach to identify new targets and understand molecular pathogenesis in specific subtypes of cancer. Moreover, HJURP could be a valuable therapeutic target in patients with t(4;14)-positive myeloma. SIGNIFICANCE: A super-enhancer screen in t(4;14) multiple myeloma serves to identify genes that promote growth and survival of myeloma cells, which may be evaluated in future studies as therapeutic targets.Published versionThe work was supported by the National Research Foundation Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiative (to W.J. Chng), the NMRC Clinician Scientist Investigator award (to W.J. Chng), the RNA Biology Center at CSI Singapore, NUS, from funding by the Singapore Ministry of Education’s Tier 3 grants, grant number MOE2014-T3–1-006 (to W.J. Chng), the National Natural Science Foundation of China (grant no. 82000212 to Y. Jia), Natural Science Foundation of Zhejiang Province (grant no. LQ21H160022 to Y. Jia), Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (grant no. 2021RC003 to Y. Jia). Y. Jia also thanks the China Scholarship Council (grant no. 201706320167) for financial support to visit National University of Singapore
    corecore