89 research outputs found

    Lipoxygenases in renal injury—Loading the matrix

    Get PDF

    Erk in Kidney Diseases

    Get PDF
    Acute or chronic kidney injury results from various insults and pathological conditions, and is accompanied by activation of compensatory repair mechanisms. Both insults and repair mechanisms are initiated by circulating factors, whose cellular effects are mediated by activation selective signal transduction pathways. Two main signal transduction pathways are activated during these processes, the phosphatidylinositol 3′ kinase (PI-3K)/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK) cascades. This review will focus on the latter, and more specifically on the role of extracellular signal-regulated kinase (ERK) cascade in kidney injury and repair

    An improved technique for ultrasound guided percutaneous renal biopsy

    Get PDF

    Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy

    Get PDF
    Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. The renin-angiotensin system (RAS) and growth factors mediate structural and functional changes during the course of diabetic nephropathy (DN). Studies in humans and experimental models with DN suggest their involvement in the development and progression of DN. Activation of renal tissue RAS and increased expression of growth factors have been demonstrated at early stages of the disease. Angiotensin II and growth factors alter renal hemodynamics and exert trophic changes in renal cells that eventually result in fibrosis through direct mechanisms or through the release of other mediators. Their effects are likely modulated by metabolic changes including high glucose and free fatty acids. While blockade of the RAS ameliorates DN in humans, such evidence for blockade of growth factors is still lacking. It is likely that susceptibility to the development of DN and therapeutic efficacy are modulated by genetic polymorphisms in components of the RAS and growth factors including their receptors and other target molecules. Approaches to understand the intricate relationship between these systems and the mechanism(s) by which they alter capillary permeability and result in structural changes are areas of fruitful investigation

    Regulation of Glomerular Endothelial Cell Proteoglycans by Glucose

    Get PDF
    The presence of heparan sulfate proteoglycan (HSPG) in anionic sites in the lamina rara interna of glomerular basement membrane suggests that the proteoglycan may be deposited by the glomerular endothelial cells (GEndo). We have previously demonstrated that bovine GEndo in vitro synthesize perlecan, a species of glomerular basement membrane HSPG. In this study we examined whether high glucose medium regulates the GEndo metabolism of glycopeptides including perlecan. Metabolic labeling of glycoconjugates with 35S-SO4, sequential ion exchange and Sepharose CL-4B chromatography of labeled glycoconjugates, and northern analysis were performed. Incubation of GEndo for 8 to 14 weeks (but not for 1-2 weeks) in medium containing 30 mM glucose resulted in nearly 50% reduction in the synthesis of cell layer and medium 35SO4-labeled low anionic glycoproteins and proteoglycans, including that of basement membrane HSPG (Kav 0.42) compared to GEndo grown in 5 mM glucose medium; no changes in anionic charge density or hydrodynamic size of proteoglycans were noted. Northern analysis demonstrated that the mRNA abundance of perlecan was reduced by 47% in cells incubated with 30 mM glucose. Our data suggest that high glucose medium reduces the GEndo synthesis of perlecan by regulating its gene expression. Reduced synthesis of perlecan by GEndo may contribute to proteinuria seen in diabetic nephropathy

    HIV-1 Promotes Renal Tubular Epithelial Cell Protein Synthesis: Role of mTOR Pathway

    Get PDF
    Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy

    The podocyte and the proteoglycan

    No full text

    The type 2 vascular endothelial growth factor receptor recruits insulin receptor substrate-1 in its signalling pathway.

    No full text
    Vascular endothelial growth factor (VEGF) isoforms exert their biological effects through receptors that possess intrinsic tyrosine kinase activity. Whether VEGF binding to its receptors recruits insulin receptor substrate (IRS) family of docking proteins to the receptor is not known. Following incubation of mouse kidney proximal tubular epithelial cells with VEGF, we observed an increase in tyrosine phosphorylation of several proteins, including one of approximately 200 kDa, suggesting possible regulation of phosphorylation of IRS proteins. VEGF augmented tyrosine phosphorylation of IRS-1 in kidney epithelial cells and rat heart endothelial cells in a time-dependent manner. In the epithelial cells, association of IRS-1 with type 2 VEGF receptor was promoted by VEGF. VEGF also increased association of IRS-1 with the p85 regulatory subunit of phosphoinositide 3-kinase (PI 3-kinase), and PI 3-kinase activity in IRS-1 immunoprecipitates was increased in VEGF-treated cells. Incubation of epithelial cells with antisense IRS-1 oligonucleotide, but not sense oligonucleotide, reduced expression of the protein and VEGF-induced PI 3-kinase activity in IRS-1 immunoprecipitates. Additionally, VEGF-induced protein synthesis was also impaired by antisense but not sense IRS-1 oligonucleotide. These data provide the first evidence that binding of VEGF to its type 2 receptor promotes association of IRS-1 with the receptor complex. This association may account for some of the increase in VEGF-induced PI 3-kinase activity, and the increase in de novo protein synthesis seen in renal epithelial cells
    corecore