15,574 research outputs found
Euclidean Quantum Mechanics and Universal Nonlinear Filtering
An important problem in applied science is the continuous nonlinear filtering
problem, i.e., the estimation of a Langevin state that is observed indirectly.
In this paper, it is shown that Euclidean quantum mechanics is closely related
to the continuous nonlinear filtering problem. The key is the configuration
space Feynman path integral representation of the fundamental solution of a
Fokker-Planck type of equation termed the Yau Equation of continuous-continuous
filtering. A corollary is the equivalence between nonlinear filtering problem
and a time-varying Schr\"odinger equation.Comment: 19 pages, LaTeX, interdisciplinar
Universal Nonlinear Filtering Using Feynman Path Integrals II: The Continuous-Continuous Model with Additive Noise
In this paper, the Feynman path integral formulation of the
continuous-continuous filtering problem, a fundamental problem of applied
science, is investigated for the case when the noise in the signal and
measurement model is additive. It is shown that it leads to an independent and
self-contained analysis and solution of the problem. A consequence of this
analysis is Feynman path integral formula for the conditional probability
density that manifests the underlying physics of the problem. A corollary of
the path integral formula is the Yau algorithm that has been shown to be
superior to all other known algorithms. The Feynman path integral formulation
is shown to lead to practical and implementable algorithms. In particular, the
solution of the Yau PDE is reduced to one of function computation and
integration.Comment: Interdisciplinary, 41 pages, 5 figures, JHEP3 class; added more
discussion and reference
- …