12 research outputs found

    Molybdenum-Doped Manganese Oxide as a Highly Efficient and Economical Water Oxidation Catalyst

    Full text link
    The development of efficient and noble-metal-free electrocatalysts for the challenging oxygen evolution reaction (OER) is crucial for sustainable energy solutions. In this work, a facile co-precipitation method, followed by thermal postsynthetic treatment in N2/air, was developed to synthesize molybdenum-doped α-Mn2O3 materials (Mn2O3:1.72%Mo, Mn2O3:2.64%Mo, Mn2O3:32.23%Mo, and Mn2O3:49.67%Mo) as low-cost water-oxidizing electrocatalysts. Powder X-ray diffraction (PXRD), extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM) investigations showed the presence of strong distortions in the molybdenum-doped α-Mn2O3 host lattice (Mn2O3:2.64%Mo) and an average oxidation state of Mn2.8+. Several test assays demonstrated that these structural features significantly promote the OER activity. Mn2O3:2.64%Mo was found to exhibit very good activity among the series in cerium ammonium nitrate (CAN)-assisted water oxidation with a maximum turnover frequency (TOF) of 585 μmol O2 m–2 h–1, which is a 15-fold improvement of the pure α-Mn2O3 activity and higher than the value of the previously reported benchmark Mn-based catalyst, birnessite. The optimized catalyst (Mn2O3:2.64%Mo) excelled through a low onset potential (300 mV) and a promising overpotential of 570 mV for OER at a current density of 10 mA cm–2, which is only 20 mV above that of the noble metal benchmark RuO2 electrode and competitive with that of the most active Mn-based OER catalysts reported to date. Electrochemical impedance spectroscopy (EIS) studies demonstrated that the catalytically active surface area of Mn2O3:2.64%Mo is much higher than that of α-Mn2O3 for the OER at the applied potential. In addition, stability during 30 h without degradation was achieved, which exceeds that of a wide range of current noble-metal-free electrocatalysts. Our study provides a facile and effective approach for the preparation of economical and high-performance manganese-based electrocatalysts for water oxidation

    Economic Manganese-Oxide-Based Anodes for Efficient Water Oxidation: Rapid Synthesis and In Situ Transmission Electron Microscopy Monitoring

    Full text link
    Earth-abundant, environmentally friendly, and low-cost manganese oxide materials are promising resources for water oxidation catalysts in clean solar fuel applications. We here introduce a convenient and economic method for manufacturing stable and highly efficient manganese-oxide-based anodes for electrochemical water oxidation under neutral conditions. The electrodes were fabricated through thermal decomposition of acidic KMnO4 solution. The phase transitions of the manganese oxide film during calcination and thermal decomposition of KMnO4 were monitored with in situ heating transmission electron microscopy (TEM), in situ heating scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (STEM/EDX), and in situ heating powder X-ray diffraction (PXRD). In-depth monitoring of formation pathways and phase transformations by in situ techniques under high temperatures shed light upon the fabrication of efficient manganese oxides for energy conversion applications. After parameter optimizations, the best-performing manganese oxide catalyst was applied for water electrolysis for 100 h with a stable current density of 1.0 mA/cm2 at an overpotential of 490 mV in neutral pH. Post operando characterizations of key oxide film properties showed no significant changes. The readily commercially available precursor enables a simple and rapid fabrication method, and the promising stability and high performance of the herein developed electrodes render them quite promising for technological water splitting systems

    Fluoride etched Ni-based electrodes as economic oxygen evolution electrocatalysts

    Full text link
    Electrochemical water splitting is a promising technology for eco-friendly energy storage. However, the design principles for highly active, robust, and noble metal-free electrocatalysts for industrial-scale hydrogen production remain controversial. Oxygen-free compounds containing anionic species with a very high oxidation potential, such as fluorides, have emerged as high-performance targets for thermodynamically stable oxygen evolution reaction (OER) catalysts. They can further be designed to fit the key criteria of high electrical conductivity and stability. Herein, we present a facile and scalable etching method for constructing fluoride doped metallic nickel-based anodes from industrial Ni foam sources with high application potential for large-scale hydrogen production setups. The fluoride-etched Ni-catalysts were investigated with a wide range of techniques, such as powder X-ray diffraction (PXRD), extended X-ray absorption fine structure spectroscopy (EXAFS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). Optimized catalysts displayed a promising overpotential of 220 mV for the OER at a current density of 60 mA cm−2, which is competitive with noble metal-based reference catalysts, such as iridium oxide. Electrochemical impedance spectroscopy (EIS) studies demonstrated that etching of the electrode surface in fluoride medium leads to a drastic decrease of Rct. The corresponding decreased resistivity towards electrochemical OER on the electrode surface gives rise to the notably enhanced performance, with a minimum of synthetic effort

    Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives

    Get PDF
    The development of reliable water oxidation catalysts (WOCs) is essential for implementing artificial photosynthesis on a large technological scale. WOC research has evolved into two major branches, namely molecular and heterogeneous catalysts. Manifold design principles and plenty of mechanistic insights have been developed in these individual fields after decades of investigations. Over the past years, a growing need for knowledge transfer between both sides has emerged in order to expedite the development and optimization of next-generation WOCs. In this review, we first provide selected recent highlights in the area of molecular WOCs with different nuclearities, together with current mechanistic insight. WOCs offering molecular integrity under operational conditions are ideal platforms for elucidating reaction mechanisms and well-defined structure–function correlations at the atomic level. Next, recent mechanistic advances and design strategies for heterogeneous WOCs are illustrated for representative examples, together with a discussion of their inherent limitations in mechanistic studies. Finally, illustrative cases of knowledge transfer between molecular and heterogeneous WOCs are discussed to highlight the advantages of combining the best of both catalyst types. For the sake of conciseness, this review focuses primarily on WOCs based on the first-row transition metals, which are attracting increasing attention for both fundamental studies and economic applications

    The Role of Surface States on Reduced TiO2@BiVO4 Photoanodes: Enhanced Water Oxidation Performance through Improved Charge Transfer

    Full text link
    The efficient transfer of photogenerated carriers and improved stability against corrosion are essential to maximize the performance of photoanodes. Herein, a reduced catalytic layer formed on a TiO2 protected BiVO4 (R-TiO2@BiVO4) photoanode has been prepared for progress on both fronts. Specifically, R-TiO2@BiVO4 photoanodes at pH 8 displayed a high photocurrent of 2.1 mA cm–2 at 1.23 VRHE and a more negative onset potential of 234 mVRHE compared to pristine BiVO4. We here discovered two surface states on BiVO4 photoanodes through photoelectrochemical impedance studies. In contrast, only one of them, located at higher potential, appeared on oxygen-vacancy-rich R-TiO2@BiVO4 photoanodes. For BiVO4 photoanodes, the first surface state (SS1) is located near the onset potential (∼0.45 VRHE), while the second surface state (SS2) sits near the water oxidation potential (∼1.05 VRHE). However, SS1 at lower energetics, which originated from water oxidation intermediates with slow kinetics, is passivated in R-TiO2@BiVO4 photoanodes. In contrast, the hole densities in SS2 at higher energetics were greatly enhanced in R-TiO2@BiVO4 photoanodes, due to the increased accumulation of intermediates with fast water oxidation kinetics. Therefore, SS2 is proposed as a reaction center, which is related to the amount and occupancy of oxygen vacancies. Additionally, surface recombination centers in BiVO4 photoanodes are passivated by TiO2, which prevents electron trapping into the irreversible surface conversion of VO2+ to VO2+. These observations provide fundamental understanding of the role of surface states and of the function of oxygen vacancies in BiVO4 photoanodes. Our study offers detailed insight into key strategies for optimal photoelectrochemical performance through surface property tuning

    Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopy

    Full text link
    The design of molecular oxygen-evolution reaction (OER) catalysts requires fundamental mechanistic studies on their widely unknown mechanisms of action. To this end, copper complexes keep attracting interest as good catalysts for the OER, and metal complexes with TMC (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) stand out as active OER catalysts. A mononuclear copper complex, [Cu(TMC)(H2O)](NO3)2 (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), combined both key features and was previously reported to be one of the most active copper-complex-based catalysts for electrocatalytic OER in neutral aqueous solutions. However, the functionalities and mechanisms of the catalyst are still not fully understood and need to be clarified with advanced analytical studies to enable further informed molecular catalyst design on a larger scale. Herein, the role of nanosized Cu oxide particles, ions, or clusters in the electrochemical OER with a mononuclear copper(II) complex with TMC was investigated by operando methods, including in situ vis-spectroelectrochemistry, in situ electrochemical liquid transmission electron microscopy (EC-LTEM), and extended X-ray absorption fine structure (EXAFS) analysis. These combined experiments showed that Cu oxide-based nanoparticles, rather than a molecular structure, are formed at a significantly lower potential than required for OER and are candidates for being the true OER catalysts. Our results indicate that for the OER in the presence of a homogeneous metal complex-based (pre)catalyst, careful analyses and new in situ protocols for ruling out the participation of metal oxides or clusters are critical for catalyst development. This approach could be a roadmap for progress in the field of sustainable catalysis via informed molecular catalyst design. Our combined approach of in situ TEM monitoring and a wide range of complementary spectroscopic techniques will open up new perspectives to track the transformation pathways and true active species for a wide range of molecular catalysts

    Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopy

    No full text
    The design of molecular oxygen-evolution reaction (OER) catalysts requires fundamental mechanistic studies on their widely unknown mechanisms of action. To this end, copper complexes keep attracting interest as good catalysts for the OER, and metal complexes with TMC (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) stand out as active OER catalysts. A mononuclear copper complex, [Cu(TMC)(H2O)](NO3)2 (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), combined both key features and was previously reported to be one of the most active copper-complex-based catalysts for electrocatalytic OER in neutral aqueous solutions. However, the functionalities and mechanisms of the catalyst are still not fully understood and need to be clarified with advanced analytical studies to enable further informed molecular catalyst design on a larger scale. Herein, the role of nanosized Cu oxide particles, ions, or clusters in the electrochemical OER with a mononuclear copper(II) complex with TMC was investigated by operando methods, including in situ vis-spectroelectrochemistry, in situ electrochemical liquid transmission electron microscopy (EC-LTEM), and extended X-ray absorption fine structure (EXAFS) analysis. These combined experiments showed that Cu oxide-based nanoparticles, rather than a molecular structure, are formed at a significantly lower potential than required for OER and are candidates for being the true OER catalysts. Our results indicate that for the OER in the presence of a homogeneous metal complex-based (pre)catalyst, careful analyses and new in situ protocols for ruling out the participation of metal oxides or clusters are critical for catalyst development. This approach could be a roadmap for progress in the field of sustainable catalysis via informed molecular catalyst design. Our combined approach of in situ TEM monitoring and a wide range of complementary spectroscopic techniques will open up new perspectives to track the transformation pathways and true active species for a wide range of molecular catalysts.ISSN:1944-8244ISSN:1944-825

    Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12

    Full text link
    Cobalt compounds are intensely explored as efficient catalysts for the oxygen evolution reaction (OER). Since vitamin B12 is a soluble cobalt compound with high enzymatic activity, evaluating its OER activity is of relevance for biomimetic catalyst research. In this work, the temporal evolution of a homogenous vitamin B12 catalyst in the early stages of OER was investigated by an advanced combination of in situ electrochemical liquid transmission electron microscopy (EC-LTEM), in situ UV–vis spectroelectrochemistry, and extended X-ray absorption fine structure (EXAFS) methods. For the first time, we provided direct evidence of diffuse layer dynamics on the working electrode interface. The results suggested that the formation of cobalt oxyphosphate nanoparticles on the working electrode interface and in the presence of phosphate buffer is the initial stage of the catalytic pathway. Computational results confirmed that the ligand oxidation pathway could occur at potentials below the OER thermodynamic barrier (1.23 V vs reversible hydrogen electrode (RHE)), which leads to a Co ion leaching into the electrolyte. This study showed that investigation of the apparent molecular mechanisms of OER with metal complexes requires careful analyses. We illustrate the high precision and sensitivity of EC-LTEM under operational conditions to monitor heterogeneous catalysts generated during OER and to evaluate their actual roles in the catalytic process
    corecore