3 research outputs found

    Quality Factor for the Hadronic Calorimeter in High Luminosity Conditions

    No full text
    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of ATLAS experiment and has about 10,000 eletronic channels. An Optimal Filter (OF) has been used to estimate the energy sampled by the calorimeter and applies a Quality Factor (QF) for signal acceptance. An approach using Matched Filter (MF) has also been pursued. In order to cope with the luminosity rising foreseen for LHC operation upgrade, different algorithms have been developed. Among them, the Constrained Optimal Filter (COF) is showing good capacity in handling such luminosity rise by using a deconvolution technique, which revocers physics signals from out of time pile up. When pile up noise is low, COF switches to MF estimator for optimal performance. Currently, the OF measure for signal acceptance is implemented through a chi-square test. At a low-muninosity scenario, such QF measure has been used as a way to describe how the acquired singal is compatible to the pulse shape pattern. However, at high-luminosity conditions, due to pile up, this QF acceptance is no longer possiblev when OF is employed, and the QF becomes a parameter to indicate whether the reconstructed signal suffers or not from pile up. As COF recovers the original pulse shape, the QF may be used again as signal acceptance index. In this work, a new QF measure is introduced. It is based on divergence statistics, which measures the similarity of probability density functions. The analysis of QF measures in deconvolved pulses is performed and the chi-square measure is compared to the divergence index. Results are shown for high-luminosity Monte Carlo data

    ATLAS

    No full text
    % ATLAS \\ \\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and Bs0 B ^0 _{s} -mixing. \\ \\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial field, electromagnetic and hadronic calorimeters outside the solenoid and in the forward regions, and barrel and end-cap air-core-toroid muon spectrometers. The precision measurements for photons, electrons, muons and hadrons, and identification of photons, electrons, muons, τ\tau-leptons and b-quark jets are performed over η| \eta | < 2.5. The complete hadronic energy measurement extends over η| \eta | < 4.7. \\ \\The inner tracking detector consists of straw drift tubes interleaved with transition radiators for robust pattern recognition and electron identification, and several layers of semiconductor strip and pixel detectors providing high-precision space points. \\ \\The e.m. calorimeter is a lead-Liquid Argon sampling calorimeter with an integrated preshower detector and a presampler layer immediately behind the cryostat wall for energy recovery. The end-cap hadronic calorimeters also use Liquid Argon technology, with copper absorber plates. The end-cap cryostats house the e.m., hadronic and forward calorimeters (tungsten-Liquid Argon sampling). The barrel hadronic calorimeter is an iron-scintillating tile sampling calorimeter with longitudinal tile geometry. \\ \\Air-core toroids are used for the muon spectrometer. Eight superconducting coils with warm voussoirs are used in the barrel region complemented with superconducting end-cap toroids in the forward regions. The toroids will be instrumented with Monitored Drift Tubes (Cathode Strip Chambers at large rapidity where there are high radiation levels). The muon trigger and second coordinate measurement for muon tracks are provide
    corecore