24 research outputs found
Restoration of peripheral V2 receptor vasopressin signaling fails to correct behavioral changes in Brattleboro rats.
Beside its hormonal function in salt and water homeostasis, vasopressin released into distinct brain areas plays a crucial role in stress-related behavior resulting in the enhancement of an anxious/depressive-like state. We aimed to investigate whether correction of the peripheral symptoms of congenital absence of AVP also corrects the behavioral alterations in AVP-deficient Brattleboro rats. Wild type (WT) and vasopressin-deficient (KO) male Brattleboro rats were tested. Half of the KO animals were treated by desmopressin (V2-receptor agonist) via osmotic minipump (subcutaneous) to eliminate the peripheral symptoms of vasopressin-deficiency. Anxiety was studied by elevated plus maze (EPM), defensive withdrawal (DW) and marble burying (MB) tests, while depressive-like changes were monitored in forced swimming (FS) and anhedonia by sucrose preference test. Cell activity was examined in septum and amygdala by c-Fos immunohistochemistry after 10min FS. KO rats spent more time in the open arm of the EPM, spent less time at the periphery of DW and showed less burying behavior in MB suggesting a reduced anxiety state. KO animals showed less floating behavior during FS revealing a less depressive phenotype. Desmopressin treatment compensated the peripheral effects of vasopressin-deficiency without a significant influence on the behavior. The FS-induced c-Fos immunoreactivity in the medial amygdala was different in WT and KO rats, with almost identical levels in KO and desmopressin treated animals. There were no differences in central and basolateral amygdala as well as in lateral septum. Our data confirmed the role of vasopressin in the development of affective disorders through central mechanisms. The involvement of the medial amygdala in the behavioral alterations of vasopressin deficient animals deserves further attention
Differential Roles of the Two Raphe Nuclei in Amiable Social Behavior and Aggression – An Optogenetic Study
Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex
Differential Roles of the Two Raphe Nuclei in Amiable Social Behavior and Aggression - An Optogenetic Study.
Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex
The effectiveness of extinction training in male rats : Temporal considerations and brain mechanisms
The extinction of conditioned fear is frequently used in laboratories as a model for human exposure therapy and is crucial for studies of posttraumatic stress disorder (PTSD). However, the efficacy of specific protocols can vary greatly, and the underlying brain mechanisms are not sufficiently clarified. To address this issue, variable starting time (one or twenty-eight days after fear conditioning) and extinction protocols were used, and the efficacy and durability of fear extinction were also studied. Changes in the behavior, stress hormone levels and neuronal activation patterns of stressed rats were analyzed. Conditioned fear was rapidly and efficiently extinguished by all the protocols investigated. However, when these extinction protocols were initiated one day after fear training, conditioned fear relapsed spontaneously four weeks later. In contrast, when extinction trials were started 28 days after conditioning, no relapse occurred. Hormone measurements taken by the end of extinction trials indicated that adrenocorticotropin, but not corticosterone responses reflected behavioral extinction without any sign of relapse. The last extinction training increased the activation of the medial prefrontal cortex and decreased the activation of the central and medial amygdala when extinction began one day after fear conditioning. By contrast, the activation of the basolateral amygdala and the entire hippocampus decreased by the last training session when extinction started 28 days after fear conditioning. Our findings show that extinction training can extinguish remote fear memories more effectively than recent ones, and that the brain mechanisms underlying remote and recent fear memory extinction differ. Laboratory models should also focus on a later time point to increase their translational value
Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease
Studying animal models furthers our understanding of Parkinson’s disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson’s disease in mice
Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions
Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases
Median raphe region stimulation alone generates remote, but not recent fear memory traces
The median raphe region (MRR) is believed to control the fear circuitry indirectly, by influencing the encoding and retrieval of fear memories by amygdala, hippocampus and prefrontal cortex. Here we show that in addition to this established role, MRR stimulation may alone elicit the emergence of remote but not recent fear memories. We substituted electric shocks with optic stimulation of MRR in C57BL/6N male mice in an optogenetic conditioning paradigm and found that stimulations produced agitation, but not fear, during the conditioning trial. Contextual fear, reflected by freezing was not present the next day, but appeared after a 7 days incubation. The optogenetic silencing of MRR during electric shocks ameliorated conditioned fear also seven, but not one day after conditioning. The optogenetic stimulation patterns (50Hz theta burst and 20Hz) used in our tests elicited serotonin release in vitro and lead to activation primarily in the periaqueductal gray examined by c-Fos immunohistochemistry. Earlier studies demonstrated that fear can be induced acutely by stimulation of several subcortical centers, which, however, do not generate persistent fear memories. Here we show that the MRR also elicits fear, but this develops slowly over time, likely by plastic changes induced by the area and its connections. These findings assign a specific role to the MRR in fear learning. Particularly, we suggest that this area is responsible for the durable sensitization of fear circuits towards aversive contexts, and by this, it contributes to the persistence of fear memories. This suggests the existence a bottom-up control of fear circuits by the MRR, which complements the top-down control exerted by the medial prefrontal cortex
Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice
Serotonergic and glutamatergic neurons of median raphe region (MRR) play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7) are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS) significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 μM), whereas the selective 5-HT1A agonist buspirone (0.1 μM) was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 μM), and AZ-10606120 (0.1 μM). Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the first time the modulation of 5-HT release from hippocampal MRR terminals by the endogenous activation of P2rx7s. P2rx7 mediated modulation of 5-HT release could contribute to various physiological and pathophysiological phenomena, related to hippocampal serotonergic transmission
Efficient training of mice on the 5-choice serial reaction time task in an automated rodent training system
Experiments aiming to understand sensory-motor systems, cognition and behavior necessitate training animals to perform complex tasks. Traditional training protocols require lab personnel to move the animals between home cages and training chambers, to start and end training sessions, and in some cases, to hand-control each training trial. Human labor not only limits the amount of training per day, but also introduces several sources of variability and may increase animal stress. Here we present an automated training system for the 5-choice serial reaction time task (5CSRTT), a classic rodent task often used to test sensory detection, sustained attention and impulsivity. We found that full automation without human intervention allowed rapid, cost-efficient training, and decreased stress as measured by corticosterone levels. Training breaks introduced only a transient drop in performance, and mice readily generalized across training systems when transferred from automated to manual protocols. We further validated our automated training system with wireless optogenetics and pharmacology experiments, expanding the breadth of experimental needs our system may fulfill. Our automated 5CSRTT system can serve as a prototype for fully automated behavioral training, with methods and principles transferrable to a range of rodent tasks
Depressive- and anxiety-like behaviors and stress-related neuronal activation in vasopressin-deficient female Brattleboro rats.
Vasopressin can contribute to the development of stress-related psychiatric disorders, anxiety and depression. Although these disturbances are more common in females, most of the preclinical studies have been done in males. We compared female vasopressin-deficient and +/+ Brattleboro rats. To test anxiety we used open-field, elevated plus maze (EPM), marble burying, novelty-induced hypophagia, and social avoidance tests. Object and social recognition were used to assess short term memory. To test depression-like behavior consumption of sweet solutions (sucrose and saccharin) and forced swim test (FST) were studied. The stress-hormone levels were followed by radioimmunoassay and underlying brain areas were studied by c-Fos immunohistochemistry. In the EPM the vasopressin-deficient females showed more entries towards the open arms and less stretch attend posture, drank more sweet fluids and struggled more (in FST) than the +/+ rats. The EPM-induced stress-hormone elevations were smaller in vasopressin-deficient females without basal as well as open-field and FST-induced genotype-differences. On most studied brain areas the resting c-Fos levels were higher in vasopressin-deficient rats, but the FST-induced elevations were smaller than in the +/+ ones. Similarly to males, female vasopressin-deficient animals presented diminished depression- and partly anxiety-like behavior with significant contribution of stress-hormones. In contrast to males, vasopressin deficiency in females had no effect on object and social memory, and stressor-induced c-Fos elevations were diminished only in females. Thus, vasopressin has similar effect on anxiety- and depression-like behavior in males and females, while only in females behavioral alterations are associated with reduced neuronal reactivity in several brain areas