499 research outputs found
Theoretical study of oxygen sorption and diffusion in the volume and on the surface of a γ-TiAl alloy
The oxygen sorption on the low-index (001), (100), and (110) surfaces of a γ-TiAl alloy is studied by the pseudopotential method with the generalized gradient approximation for the exchange-correlation functional. The most preferred sites for oxygen sorption in the bulk and on the surface of the alloy are determined. The titanium-rich octahedral site is shown to be preferred for oxygen sorption in the bulk material. The effect of the oxygen concentration on the atomic and electronic structures of the stoichiometric TiAl(100) surface is studied. It is shown that, at the first stage of oxidation, oxygen prefers to form bonds with titanium. The energy barriers for oxygen diffusion on the stoichiometric (100) surface and in the bulk of the material are calculated. The energy barriers are shown to depend substantially on the local environments of oxygen and to increase during diffusion from titanium-rich sites. The most possible mechanism of oxygen diffusion from the (100) surface to the bulk of the material is oxygen migration through tetrahedral sites
Recommended from our members
Improving charge separation across a hybrid oxide/polymer interface by Cs doping of the metal oxide
The process of photoinduced charge carrier separation in hybrid optoelectronics remains only partially understood, with the mechanism behind creation and dissociation of bound charge pairs (BCPs) being open questions. To investigate these processes, we employ the model hybrid ZnO/P3HT system and show that Cs doping of ZnO results in a decrease in the density of gap states at the metal oxide surface and in turn, a reduction in the yield of BCPs. This provides direct experimental evidence for a previously proposed model of BCP creation by electron trapping at the metal oxide surface states. Furthermore, Cs doping is found to substantially increase open circuit voltage in these devices without the negative effects on short circuit current that were observed in studies with other dopants. This offers new possibilities for hybrid photovoltaic devices with increased power conversion efficiencies and provides valuable insights on the charge separation processes in hybrid organic-inorganic photovoltaics.We kindly thank Prof. Annemarie Pucci and Prof. Uwe Bunz for providing access to the AFM and the device fabrication facilities, respectively. A. A. B. is a Royal Society University Research Fellow. P. E. H. and Y. V. thank the Excellence Initiative for funding.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/admi.20150061
In situ observation of picosecond polaron self-localisation in α-Fe2O3 photoelectrochemical cells
Hematite (α-Fe2O3) is the most studied artificial oxygen-evolving photo-anode and yet its efficiency limitations and their origin remain unknown. A sub-picosecond reorganisation of the hematite structure has been proposed as the mechanism which dictates carrier lifetimes, energetics and the ultimate conversion yields. However, the importance of this reorganisation for actual device performance is unclear. Here we report an in situ observation of charge carrier self-localisation in a hematite device, and demonstrate that this process affects recombination losses in photoelectrochemical cells. We apply an ultrafast, device-based optical-control method to resolve the subpicosecond formation of small polarons and estimate their reorganisation energy to be ~0.5 eV. Coherent oscillations in the photocurrent signals indicate that polaron formation may be coupled to specific phonon modes (<100 cm-1). Our results bring together spectroscopic and device characterisation approaches to reveal new photophysics of broadly-studied hematite devices
Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous
While the susceptibility of CH3NH3PbI3 to water is well documented, water influence on device performance is not well understood. Herein we use infrared spectroscopy to show that water infiltration into CH3NH3PbI3 occurs much faster and at much lower humidity than previously thought. We propose a molecular model where water molecules have a strong effect on the hydrogen bonding between the methylammonium cations and the Pb-I cage. Furthermore, the exposure of CH3NH3PbI3 to ambient environment increases the photocurrent of films in lateral devices by more than one order of magnitude. The observed slow component in the photocurrent buildup indicates that the effect is associated with enhanced proton conduction when light is combined with water and oxygen exposure.C.M. and M.S. acknowledge support by the Heidelberg Graduate School of Fundamental Physics. A.A.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.chemmater.5b0388
Multi-Pulse Terahertz Spectroscopy Unveils Hot Polaron Photoconductivity Dynamics in Metal-Halide Perovskites
The behavior of hot carriers in metal-halide perovskites (MHPs) present a
valuable foundation for understanding the details of carrier-phonon coupling in
the materials as well as the prospective development of highly efficient hot
carrier and carrier multiplication solar cells. Whilst the carrier population
dynamics during cooling have been intensely studied, the evolution of the hot
carrier properties, namely the hot carrier mobility, remain largely unexplored.
To address this, we introduce a novel ultrafast visible pump - infrared push -
terahertz probe spectroscopy (PPP-THz) to monitor the real-time conductivity
dynamics of cooling carriers in methylammonium lead iodide. We find a decrease
in mobility upon optically depositing energy into the carriers, which is
typical of band-transport. Surprisingly, the conductivity recovery dynamics are
incommensurate with the intraband relaxation measured by an analogous
experiment with an infrared probe (PPP- IR), and exhibit a negligible
dependence on the density of hot carriers. These results and the kinetic
modelling reveal the importance of highly-localized lattice heating on the
mobility of the hot electronic states. This collective polaron-lattice
phenomenon may contribute to the unusual photophysics observed in MHPs and
should be accounted for in devices that utilize hot carriers.Comment: 28 pages, 4 figures, 77 reference
Impact of Marginal Exciton-Charge-Transfer State Offset on Charge Generation and Recombination in Polymer:Fullerene Solar Cells
The energetic offset between the initial photoexcited state and charge-transfer (CT) state in organic heterojunction solar cells influences both charge generation and open-circuit voltage (Voc). Here, we use time-resolved spectroscopy and voltage loss measurements to analyze the effect of the exciton–CT state offset on charge transfer, separation, and recombination processes in blends of a low-band-gap polymer (INDT-S) with fullerene derivatives of different electron affinity (PCBM and KL). For the lower exciton–CT state offset blend (INDT-S:PCBM), both photocurrent generation and nonradiative voltage losses are lower. The INDT-S:PCBM blend shows different excited-state dynamics depending on whether the donor or acceptor is photoexcited. Surprisingly, the charge recombination dynamics in INDT-S:PCBM are distinctly faster than those in INDT-S:KL upon excitation of the donor. We reconcile these observations using a kinetic model and by considering hybridization between the lowest excitonic and CT states. The modeling results show that this hybridization can significantly reduce Voc losses while still allowing reasonable charge generation efficiency
MATHEMATICAL MODELS PREDICTING LEUKOPENIA AND NEUTROPENIA IN PATIENTS WITH CHRONIC HEPATITIS C IN THE BACKGROUND INTERFERONCONTAINING SCHEMES
Currently in the Russian Federation or chronic hepatitis C (CHC) are still relevant Interferon-based regimens. The purpose of this study is to investigate the influence of baseline characteristics and prognosis of the patient HCV genotype 1 for the development of leukopenia (LP) and neutropenia (NP). We investigated factors such as sex, age, body mass index (BMI), viral load, genotype of Interleukin-28 B (IL-28B), the initial level of leukocytes and neutrophils, alanine aminotransferase (ALT), fibrosis, duration of infection, presence of previous therapy. Absolute values of leukocytes and neutrophils were analyzed on 4, 12, 24, 48 weeks of therapy, and at 4, 12, 24 weeks after antiviral treatment with protease inhibitors (PI) 1 and 2 generation. Prognostic criteria were identified, indicating the possible development of the LP and NP expressed during treatment with interferon: female gender, low initial load, TT-genotype of IL-28B, the initial level of white blood cells and neutrophils below 5,7×109/L and 3,4×109/L, respectively. Mathematical models predicting the onset of LP and NP, formalized in the form of decision trees were also constructed. These models have shown the greatest potential for practical use in view of highest accuracy and reliability
INFLUENCE OF SERVE IN VOLLEYBALL ON THE RESULT OF THE MATCH
Serving in volleyball is one of the most powerful and beautiful elements, which has several types and depends on the nature of the service itself. The article will consider the main types of innings, for what purposes they are used.Подача в волейболе - это один из самых мощных и красивых элементов, который имеет несколько видов и зависит от характера самой подачи. В статье будут рассмотрены основные виды подач, для каких целей они используются
Modulation of LISA free-fall orbits due to the Earth-Moon system
We calculate the effect of the Earth-Moon (EM) system on the free-fall motion
of LISA test masses. We show that the periodic gravitational pulling of the EM
system induces a resonance with fundamental frequency 1 yr^-1 and a series of
periodic perturbations with frequencies equal to integer harmonics of the
synodic month (9.92 10^-7 Hz). We then evaluate the effects of these
perturbations (up to the 6th harmonics) on the relative motions between each
test masses couple, finding that they range between 3mm and 10pm for the 2nd
and 6th harmonic, respectively. If we take the LISA sensitivity curve, as
extrapolated down to 10^-6 Hz, we obtain that a few harmonics of the EM system
can be detected in the Doppler data collected by the LISA space mission. This
suggests that the EM system gravitational near field could provide an absolute
calibration for the LISA sensitivity at very low frequencies.Comment: 15 pages, 5 figure
Field Effect versus Driving Force: Charge Generation in Small-Molecule Organic Solar Cells
Efficient charge generation in organic semiconductors usually requires an interface with an energetic gradient between an electron donor and an electron acceptor in order to dissociate the photogenerated excitons. However, single-component organic solar cells based on chloroboron subnaphthalocyanine (SubNc) have been reported to provide considerable photocurrents despite the absence of an energy gradient at the interface with an acceptor. In this work, it is shown that this is not due to direct free carrier generation upon illumination of SubNc, but due to a field-assisted exciton dissociation mechanism specific to the device configuration. Subsequently, the implications of this effect in bilayer organic solar cells with SubNc as the donor are demonstrated, showing that the external and internal quantum efficiencies in such cells are independent of the donor-acceptor interface energetics. This previously unexplored mechanism results in efficient photocurrent generation even though the driving force is minimized and the open-circuit voltage is maximized
- …