128 research outputs found

    Morphology, Temperature, and Field Dependence of Charge Separation in High-Efficiency Solar Cells Based on Alternating Polyquinoxaline Copolymer

    Get PDF
    Charge separation and recombination are key processes determining the performance of organic optoelectronic devices. Here we combine photoluminescence and photovoltaic characterisation of organic solar cell devices with ultrafast multi-pulse photocurrent spectroscopy to investigate charge generation mechanisms in the organic photovoltaic devices based on a blend of an alternating polyquinoxaline copolymer with fullerene. The combined use of these techniques enables the determination of the contributions of geminate and bimolecular processes to the solar cell performance. We observe that charge separation is not a temperature-activated process in the studied materials. At the same time, the generation of free charges shows a clear external-field and morphology dependence. This indicates that the critical step of charge separation involves the non-equilibrium state that is formed at early times after photoexcitation, when the polaronic localisation is not yet complete. This work reveals new aspects of molecular level charge dynamics in the organic light-conversion systems.We thank Maxim Pschenichnikov for useful discussions, and Ergang Wang for providing TQ1. This work was supported by the Netherlands Organization for Scientific Research (NWO) through the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM). A.A.B. also acknowledges a VENI grant from NWO. A.A.B. is currently a Royal Society University Research Fellow. Photovoltaics research at Linköping was supported by the Swedish Research Council (VR), the European Commission Marie Skłodowska-Curie actions, the Swedish Energy Agency, and the Knut and Alice Wallenberg foundation (KAW).This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.jpcc.5b1080

    The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory

    Full text link
    © The Royal Society of Chemistry 2018. Hybrid organic-inorganic perovskites (HOIPs) have recently emerged as highly promising solution-processable materials for photovoltaic (PV) and other optoelectronic devices. HOIPs represent a broad family of materials with properties highly tuneable by the ions that make up the perovskite structure as well as their multiple combinations. Interestingly, recent high-efficiency PV devices using HOIPs with substantially improved long-term stability have used combinations of different ionic compositions. The structural dynamics of these systems are unique for semiconducting materials and are currently argued to be central to HOIPs stability and charge-transport properties. Here, we studied the impact of ionic composition on phonon speeds of HOIPs from Brillouin spectroscopy experiments and density functional theory calculations for FAPbBr3, MAPbBr3, MAPbCl3, and the mixed halide MAPbBr1.25Cl1.75. Our results show that the acoustic phonon speeds can be strongly modified by ionic composition, which we explain by analysing the lead-halide sublattice in detail. The vibrational properties of HOIPs are therefore tuneable by using targeted ionic compositions in the perovskite structure. This tuning can be rationalized by non-trivial effects, for example, considering the influence of the shape and dipole moment of organic cations. This has an important implications for further improvements in the stability and charge-transport properties of these systems

    Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous

    Get PDF
    While the susceptibility of CH3NH3PbI3 to water is well documented, water influence on device performance is not well understood. Herein we use infrared spectroscopy to show that water infiltration into CH3NH3PbI3 occurs much faster and at much lower humidity than previously thought. We propose a molecular model where water molecules have a strong effect on the hydrogen bonding between the methylammonium cations and the Pb-I cage. Furthermore, the exposure of CH3NH3PbI3 to ambient environment increases the photocurrent of films in lateral devices by more than one order of magnitude. The observed slow component in the photocurrent buildup indicates that the effect is associated with enhanced proton conduction when light is combined with water and oxygen exposure.C.M. and M.S. acknowledge support by the Heidelberg Graduate School of Fundamental Physics. A.A.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.chemmater.5b0388

    Impact of Marginal Exciton-Charge-Transfer State Offset on Charge Generation and Recombination in Polymer:Fullerene Solar Cells

    Get PDF
    The energetic offset between the initial photoexcited state and charge-transfer (CT) state in organic heterojunction solar cells influences both charge generation and open-circuit voltage (Voc). Here, we use time-resolved spectroscopy and voltage loss measurements to analyze the effect of the exciton–CT state offset on charge transfer, separation, and recombination processes in blends of a low-band-gap polymer (INDT-S) with fullerene derivatives of different electron affinity (PCBM and KL). For the lower exciton–CT state offset blend (INDT-S:PCBM), both photocurrent generation and nonradiative voltage losses are lower. The INDT-S:PCBM blend shows different excited-state dynamics depending on whether the donor or acceptor is photoexcited. Surprisingly, the charge recombination dynamics in INDT-S:PCBM are distinctly faster than those in INDT-S:KL upon excitation of the donor. We reconcile these observations using a kinetic model and by considering hybridization between the lowest excitonic and CT states. The modeling results show that this hybridization can significantly reduce Voc losses while still allowing reasonable charge generation efficiency

    On the energetics of bound charge-transfer states in organic photovoltaics

    Get PDF
    Using temperature-dependent optical-control spectroscopy, we show that the binding energy of localised charge-transfer state is about 90 meV in a range of organic photovoltaic systems.China Scholarship Council; Winton Programme for the Physics of Sustainability; the Engineering and Physical Sciences Research Council; the University of Cambridge (CHESS); Royal Society University Research Fellow; St John’s College, Cambridg
    • …
    corecore