3 research outputs found

    Experimental evidence that female ornamentation increases the acquisition of sperm and signals fecundity

    No full text
    Mate choice can lead to the evolution of sexual ornamentation. This idea rests on the assumption that individuals with more elaborate ornaments than competitors have higher reproductive success due to gaining greater control over mating decisions and resources provided by partners. Nevertheless, how the resources and quality of sexual partners that individuals gain access to are influenced by the ornamentation of rival individuals remains unclear. By experimentally concealing and subsequently revealing female ornaments to males, we confirm in the fowl, Gallus gallus, that female ornamentation influences male mating decisions. We further show, by manipulating the relative ornament size of females, that when females had larger ornaments than competitors they were more often preferred by males and obtained more sperm, especially from higher quality males, as measured by social status. Males may benefit by investing more sperm in females with larger ornaments as they were in better condition and produced heavier eggs. Female ornament size also decreased during incubation, providing a cue for males to avoid sexually unreceptive females. This study reveals how inter-sexual selection can lead to the evolution of female ornaments and highlights how the reproductive benefits gained from mate choice and bearing ornaments can be dependent upon social context

    Inflammatory Monocytes Promote Perineural Invasion via CCL2-Mediated Recruitment and Cathepsin B Expression.

    No full text
    Perineural invasion (PNI) is an ominous event strongly linked to poor clinical outcome. Cells residing within peripheral nerves collaborate with cancer cells to enable PNI, but the contributing conditions within the tumor microenvironment are not well understood. Here, we show that CCR2-expressing inflammatory monocytes (IM) are preferentially recruited to sites of PNI, where they differentiate into macrophages and potentiate nerve invasion through a cathepsin B-mediated process. A series of adoptive transfer experiments with genetically engineered donors and recipients demonstrated that IM recruitment to nerves was driven by CCL2 released from Schwann cells at the site of PNI, but not CCL7, an alternate ligand for CCR2. Interruption of either CCL2-CCR2 signaling or cathepsin B function significantly impaired PNI in vivo Correlative studies in human specimens demonstrated that cathepsin B-producing macrophages were enriched in invaded nerves, which was associated with increased local tumor recurrence. These findings deepen our understanding of PNI pathogenesis and illuminate how PNI is driven in part by corruption of a nerve repair program. Further, they support the exploration of inhibiting IM recruitment and function as a targeted therapy for PNI. Cancer Res; 77(22); 6400-14. ©2017 AACR
    corecore