2 research outputs found

    Beyond hydrophobisation: Deciphering the surprising reactivity of trimethylsilyl reagents towards graphene oxide

    No full text
    International audienceTrimethylsilylation of metal oxide surfaces (silica, titania…) is a common way to empower the handled supports with outstanding stability. This hydrophobisation prevailed in vital domains including chromatographic column, adsorption-based membranes and heterogeneous catalysis, where hydrolytic stability constituted a challenging issue. In spite of its benefits, trimethylsilylation of graphene oxide has been only sporadically investigated and this underlooked chemistry needs to be accurately addressed for further tailoring the surface properties of graphene materials. With this aim, we herein screened a set of commercially available trimethylsilyl reagents for end-cuping the surface of graphene oxide. Surprisingly, meticulous investigations show that these reagents behave primarily as nucleophiles and induce oxirane opening, with a diverging pattern depending on the functional group linked to trimethylsilyl fragments. Specifically: i) trimethylsilylchloride and trimethylsilyltriflate are not suitable because of the substantial side products formed under acidic conditions; ii) trimethylsilylimidazolium reacts rather through its imidazolium group with the simultaneous elimination of trimethylsilyl groups; iii) bis-silylated reagents like hexamethyldisilazane and N,O-bis-trimethylsilyl-trifluoroacetamide enable anchoring at least one functional arm while liberating the second trimethylsilyl moity. The introduced functionalities enhance the dispersion of the newly prepared graphenes in liquid medium, thereby broadening the library of solvents suitable for their handling and offering more possibilities for the ink processability. Regardless of the starting reagent, the resulting functionalisation do not compromise the anchoring ability of the graphene surface as illustrated by supporting InP/ZnS semiconductor nanocrystals. In the whole, these serendipitous findings challenge the conventional wisdom about the reactivity of trimethylsilyl reagents that was primarly associated to surface hydrophobisation, opening indeed new possibilities for graphene functionalisation and further use in materials science

    Cd3P2/Zn3P2 Core-Shell Nanocrystals: Synthesis and Optical Properties

    No full text
    International audienceII–V semiconductor nanocrystals such as Cd3P2 and Zn3P2 have enormous potential as materials in next-generation optoelectronic devices requiring active optical properties across the visible and infrared range. To date, this potential has been unfulfilled due to their inherent instability with respect to air and moisture. Core-shell system Cd3P2/Zn3P2 is synthesized and studied from structural (morphology, crystallinity, shell diameter), chemical (composition of core, shell, and ligand sphere), and optical perspectives (absorbance, emission-steady state and time resolved, quantum yield, and air stability). The improvements achieved by coating with Zn3P2 are likely due to its identical crystal structure to Cd3P2 (tetragonal), highlighting the key role crystallographic concerns play in creating cutting edge core-shell NC
    corecore