3 research outputs found

    Down's Syndrome with Alzheimer's Disease-Like Pathology: What Can It Teach Us about the Amyloid Cascade Hypothesis?

    Get PDF
    Down's syndrome (DS, trisomy 21) represents a complex genetic abnormality that leads to pathology in later life that is similar to Alzheimer's disease (AD). We compared two cases of DS with APOE ε3/3 genotypes, a similar age at death, and comparable amyloid-beta 42 peptide (Aβ42) burdens in the brain but that differed markedly in the severity of AD-like pathology. One exhibited extensive neurofibrillary pathology whereas the other showed minimal features of this type. Comparable loads of Aβ42 could relate to the cases' similar life-time accumulation of Aβ due to trisomy 21-enhanced metabolism of amyloid precursor protein (APP). The cases' significant difference in AD-like pathology, however, suggests that parenchymal deposition of Aβ42, even when extensive, may not inevitably trigger AD-like tau pathology (though it may be necessary). Thus, these observations of a natural experiment may contribute to understanding the nuances of the amyloid cascade hypothesis of AD pathogenesis

    Azilsartan Modulates HMGB1/NF-κB/p38/ERK1/2/JNK and Apoptosis Pathways during Renal Ischemia Reperfusion Injury

    No full text
    Renal ischemia/reperfusion (IR) injury is characterized by an unexpected impairment of blood flow to the kidney. Azilsartan is an angiotensin receptor blocker that is approved for the management of hypertension. The present study aimed to investigate, on molecular basics, the nephroprotective activity of azilsartan on renal IR injury in rats. Rats were assigned into four groups: (1) Sham group, (2) Azilsartan group, (3) IR group, and (4) IR/Azilsartan-treated group. Histological examination and renal function were evaluated. Levels of KIM-1, HMGB1, caspase 3, GPX, SOD, NF-κB, and p53 proteins were investigated using ELISA. mRNA levels of IL-1β, IL6, IL10, TNF-α, NF-κB, p53, and bax were assessed by qRT-PCR. Expression of p38, JNK, and ERK1/2 proteins was investigated by Western blotting. IR injury resulted in tissue damage, elevation of creatinine, BUN, KIM-1, HMGB1, caspase 3, NF-κB, and p53 levels, decreasing GPX and SOD activities, and up-regulation of NF-κB, IL-1β, IL6, TNF-α, p53, and bax genes. Furthermore, it up-regulated the expression of phosphorylated/total ratio of p38, ERK1/2, and JNK proteins. Interestingly, treatment of the injured rats with azilsartan significantly alleviated IR injury-induced histopathological and biochemical changes. It reduced the creatinine, BUN, KIM-1, HMGB1, caspase-3, NF-κB, and p53 levels, elevated GPX and SOD activities, down-regulated the expression of NF-κB, IL-1β, IL6, TNF-α, p53, and bax genes, and up-regulated IL10 gene expression. Furthermore, it decreased the phosphorylated/total ratio of p38, ERK1/2, and JNK proteins. Azilsartan exhibited nephroprotective activity in IR-injured rats via its antioxidant effect, suppression of inflammation, attenuation of apoptosis, and inhibition of HMGB1/NF-κB/p38/ERK1/2/JNK signaling pathway
    corecore