8 research outputs found

    The cross-over from Townes solitons to droplets in a 2D Bose mixture

    No full text
    When two Bose–Einstein condensates—labelled 1 and 2—overlap spatially, the equilibrium state of the system depends on the miscibility criterion for the two fluids. Here, we theoretically focus on the non-miscible regime in two spatial dimensions and explore the properties of the localized wave packet formed by the minority component 2 when immersed in an infinite bath formed by component 1. We address the zero-temperature regime and describe the two-fluid system by coupled classical field equations. We show that such a wave packet exists only for an atom number N _2 above a threshold value corresponding to the Townes soliton state. We identify the regimes where this localized state can be described by an effective single-field equation up to the droplet case, where component 2 behaves like an incompressible fluid. We study the near-equilibrium dynamics of the coupled fluids, which reveals specific parameter ranges for the existence of localized excitation modes

    A review on self-healing polymers for soft robotics

    No full text
    The intrinsic compliance of soft robots provides safety, a natural adaptation to its environment, allows to absorb shocks, and protects them against mechanical impacts. However, a literature study shows that the soft polymers used for their construction are susceptible to various types of damage, including fatigue, overloads, interfacial debonding, and cuts, tears and perforations by sharp objects. An economic and ecological solution is to construct future soft robotic systems out of self-healing polymers, incorporating the ability to heal damage. This review paper proposes criteria to evaluate the potential of a self-healing polymer to be used in soft robotic applications. Based on these soft robotics requirements and on defined performance parameters of the materials, linked to the mechanical and healing properties, the different types of self-healing polymers already available in literature are critically assessed and compared. In addition to a description of the state of the art on self-healing soft robotics, the paper discusses the driving forces and limitations to spur the interdisciplinary combination between self-healing polymer science and soft robotics

    Fecal amine metabolite analysis before onset of severe necrotizing enterocolitis in preterm infants: a prospective case-control study

    No full text
    Infants developing necrotizing enterocolitis (NEC) have a different metabolomic profile compared to controls. The potential of specific metabolomics, i.e. amino acids and amino alcohols (AAA), as early diagnostic biomarkers for NEC is largely unexplored. In this multicenter prospective case–control study, longitudinally collected fecal samples from preterm infants (born <30 weeks of gestation) from 1–3 days before diagnosis of severe NEC (Bell’s stage IIIA/IIIB), were analyzed by targeted high-performance liquid chromatography (HPLC). Control samples were collected from gestational and postnatal age-matched infants. Thirty-one NEC cases (15 NEC IIIA;16 NEC IIIB) with 1:1 matched controls were included. Preclinical samples of infants with NEC were characterized by five increased essential amino acids—isoleucine, leucine, methionine, phenylalanine and valine. Lysine and ethanolamine ratios were lower prior to NEC, compared to control samples. A multivariate model was rendered based on isoleucine, lysine, ethanolamine, tryptophan and ornithine, modestly discriminating cases from controls (AUC 0.67; p < 0.001). Targeted HPLC pointed to several specific AAA alterations in samples collected 1–3 days before NEC onset, compared to controls. Whether this reflects metabolic alterations and has a role in early biomarker development for NEC, has yet to be elucidated
    corecore