3 research outputs found

    AC-feasible Local Flexibility Market with Continuous Trading

    Full text link
    This paper proposes a novel continuous Local Flexibility Market where active power flexibility located in the distribution system can be traded. The market design engages the Market Operator, the Distribution System Operator and Market Participants with dispatchable assets. The proposed market operates in a single distribution system and considers network constraints via AC network sensitivities, calculated at an initial network operating point. Trading is possible when AC network constraints are respected and when anticipated network violations are alleviated or resolved. The implementation allows for partial bid matching and is computationally light, therefore, suitable for continuous trading applications. The proposed design is thoroughly described and is demonstrated in a test distribution system. It is shown that active power trading in the proposed market design can lead to resolution of line overloads.Comment: In proceedings of the 11th Bulk Power Systems Dynamics and Control Symposium (IREP 2022), July 25-30, 2022, Banff, Canad

    Multiple Time Resolution Stochastic Scheduling for Systems with High Renewable Penetration

    No full text

    Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review

    No full text
    Power systems in many countries have recently undergone a significant transition towards renewable and carbon-free generation sources. Those sources pose new challenges to the grid operation due to their intermittency and uncertainty. Consequently, advanced policy strategies and technologies offering new flexibility solutions on the inelastic demand side are required to maintain the reliability of power systems. Given the diversity of situations, legislation and needs across European countries and the varying nature of distribution system operators, this article reviews the deployment of demand side flexibility at national level to identify best practices and main barriers. The analysis concerns European countries of different progress in solutions that leverage flexibility towards offering electricity grid services. The scope is to explore the operation principles of European electricity markets, to assess the participation of emerging flexible resources, and to propose new approaches that facilitate the integration of flexible assets in the distribution grid. The countries reviewed are the United Kingdom, Belgium, Italy and Greece. These countries were selected owing to their diversity in terms of generation mix and market design. Barriers for market access of flexibility resources are also identified in order to form relevant country-specific recommendations
    corecore