800 research outputs found
Second Order Gauge Theory
A gauge theory of second order in the derivatives of the auxiliary field is
constructed following Utiyama's program. A novel field strength arises besides the one of the first order treatment, . The associated conserved current is obtained. It has a new
feature: topological terms are determined from local invariance requirements.
Podolsky Generalized Eletrodynamics is derived as a particular case in which
the Lagrangian of the gauge field is . In this application
the photon mass is estimated. The SU(N) infrared regime is analysed by means of
Alekseev-Arbuzov-Baikov's Lagrangian.Comment: 27 pages. No figure. Final versio
Cloud microphysical effects of turbulent mixing and entrainment
Turbulent mixing and entrainment at the boundary of a cloud is studied by
means of direct numerical simulations that couple the Eulerian description of
the turbulent velocity and water vapor fields with a Lagrangian ensemble of
cloud water droplets that can grow and shrink by condensation and evaporation,
respectively. The focus is on detailed analysis of the relaxation process of
the droplet ensemble during the entrainment of subsaturated air, in particular
the dependence on turbulence time scales, droplet number density, initial
droplet radius and particle inertia. We find that the droplet evolution during
the entrainment process is captured best by a phase relaxation time that is
based on the droplet number density with respect to the entire simulation
domain and the initial droplet radius. Even under conditions favoring
homogeneous mixing, the probability density function of supersaturation at
droplet locations exhibits initially strong negative skewness, consistent with
droplets near the cloud boundary being suddenly mixed into clear air, but
rapidly approaches a narrower, symmetric shape. The droplet size distribution,
which is initialized as perfectly monodisperse, broadens and also becomes
somewhat negatively skewed. Particle inertia and gravitational settling lead to
a more rapid initial evaporation, but ultimately only to slight depletion of
both tails of the droplet size distribution. The Reynolds number dependence of
the mixing process remained weak over the parameter range studied, most
probably due to the fact that the inhomogeneous mixing regime could not be
fully accessed when phase relaxation times based on global number density are
considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in
reduced quality), to appear in Theoretical Computational Fluid Dynamic
Foam Diagram Summation at Finite Temperature
We show that large- theory is not trivial if one accepts the
presence of a tachyon with a truly huge mass, and that it allows exact
calculation. We use it to illustrate how to calculate the exact resummed
pressure at finite temperature and verify that it is infrared and ultraviolet
finite even in the zero-mass case. In 3 dimensions a residual effect of the
resummed infrared divergences is that at low temperature or strong coupling the
leading term in the interaction pressure becomes independent of the coupling
and is 4/5 of the free-field pressure. In 4 dimensions the pressure is
well-defined provided that the temperature is below the tachyon mass. We
examine how rapidly this expansion converges and use our analysis to suggest
how one might reorganise perturbation theory to improve the calculation of the
pressure for the QCD plasma.Comment: 18 pages plain tex, with 8 figures embedded with epsf. Equation
(2.15) has been corrected and the consequent changes made to the figures. A
further analytic result has been added to the 3-dimensional calculatio
Low lying spectrum of weak-disorder quantum waveguides
We study the low-lying spectrum of the Dirichlet Laplace operator on a
randomly wiggled strip. More precisely, our results are formulated in terms of
the eigenvalues of finite segment approximations of the infinite waveguide.
Under appropriate weak-disorder assumptions we obtain deterministic and
probabilistic bounds on the position of the lowest eigenvalue. A Combes-Thomas
argument allows us to obtain so-called 'initial length scale decay estimates'
at they are used in the proof of spectral localization using the multiscale
analysis.Comment: Accepted for publication in Journal of Statistical Physics
http://www.springerlink.com/content/0022-471
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Evidence of Final-State Suppression of High-p_T Hadrons in Au + Au Collisions Using d + Au Measurements at RHIC
Transverse momentum spectra of charged hadrons with 6 GeV/c have
been measured near mid-rapidity (0.2 1.4) by the PHOBOS experiment
at RHIC in Au + Au and d + Au collisions at . The spectra for different collision centralities are compared to collisions at the same energy. The resulting nuclear modification
factor for central Au + Au collisions shows evidence of strong suppression of
charged hadrons in the high- region ( GeV/c). In contrast, the d +
Au nuclear modification factor exhibits no suppression of the high-
yields. These measurements suggest a large energy loss of the high-
particles in the highly interacting medium created in the central Au + Au
collisions. The lack of suppression in d + Au collisions suggests that it is
unlikely that initial state effects can explain the suppression in the central
Au + Au collisions.Comment: 3 pages, 4 figures, International Europhysics Conference on High
Energy Physics EPS (July 17th-23rd 2003) in Aachen, German
Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances
1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags.
2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km.
3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass).
4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat.
5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far.
6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area
Recent Results from PHOBOS at RHIC
The PHOBOS experiment at RHIC has recorded measurements for Au-Au collisions
spanning nucleon-nucleon center-of-mass energies from 19.6 GeV to 200 GeV.
Global observables such as elliptic flow and charged particle multiplicity
provide important constraints on model predictions that characterize the state
of matter produced in these collisions. The nearly 4 pi acceptance of the
PHOBOS experiment provides excellent coverage for complete flow and
multiplicity measurements. Results including beam energy and centrality
dependencies are presented and compared to elementary systems.Comment: 4 pages, 4 figures, proceedings from PANIC02 in Osaka, Japa
Identified particles in Au+Au collisions at sqrt{s_NN} = 200 GeV
The yields of identified particles have been measured at RHIC for Au+Au
collisions at sqrt{s_NN} = 200 GeV using the PHOBOS spectrometer. The ratios of
antiparticle to particle yields near mid-rapidity are presented. The first
measurements of the invariant yields of charged pions, kaons and protons at
very low transverse momenta are also shown.Comment: 4 pages, 4 figures, Contribution to Quark Matter 2002, Nantes,
France, July 200
Nanofabrication by magnetic focusing of supersonic beams
We present a new method for nanoscale atom lithography. We propose the use of
a supersonic atomic beam, which provides an extremely high-brightness and cold
source of fast atoms. The atoms are to be focused onto a substrate using a thin
magnetic film, into which apertures with widths on the order of 100 nm have
been etched. Focused spot sizes near or below 10 nm, with focal lengths on the
order of 10 microns, are predicted. This scheme is applicable both to precision
patterning of surfaces with metastable atomic beams and to direct deposition of
material.Comment: 4 pages, 3 figure
- …
