652 research outputs found

    A biologically relevant rapid quantification of physical and biological stress profiles on rocky shores.

    Get PDF
    Different combinations and intensities of physical (e.g. thermal) and biological (e.g.competition or predation) stress operate on organisms in different locations. Variation in these stresses can occur over small to medium spatial scales (cm to 10s m) in heterogeneous environments such as rocky shores, due to differences in sun and wave exposure, shore topography and/or recruitment. In this study we demonstrate how simple measurements can be taken that represent physical and biological stresses (stress profiles)in a given location. Using a bootstrapped principal component analysis, we identified significantly different stress profiles at four sites separated by only 10s to 100s of metres on the Shek O peninsula in Hong Kong. We then measured response to thermal stress, as determined by detachment temperature, in the limpet Cellana grata (which is known to be a sensitive indicator species to thermal stress) from each location. Significant differences in stress profile between locations were also seen in thermal stress tolerance of limpets from those locations. At locations where the major stresses are likely to be more physical or less biological in nature (e.g. southerly facing aspect or lower density of grazers), the mean detachment temperature was higher, whereas detachment temperature was lower at sites with more biological or less physical stress. This method is, therefore, able to determine biologically meaningful differences in stress profiles over small to medium spatial scales, and demonstrates that localised adaptation (i.e. post planktonic settlement) or acclimation of species may occur in response to these different stress profiles. The technique can be adapted to different environments and smaller or larger spatial scales as long as the stress experienced by the study species is relevant to these scales

    High-Performance Transactional Event Processing

    Get PDF
    Abstract. This paper presents a transactional framework for low-latency, high-performance, concurrent event processing in Java. At the heart of our framework lies Reflexes, a restricted programming model for highly responsive systems. A Reflex task is an event processor that can run at a higher priority and preempt any other Java thread, including the garbage collector. It runs in an obstruction-free manner with time-oblivious code. We extend Reflexes with a publish/subscribe communication system, itself based on an optimistic transactional event processing scheme, that provides efficient coordination between time-critical, low-latency tasks.We report on the comparison with a commercial JVM, and show that it is possible for tasks to achieve 50 ”s response times with way less than 1% of the executions failing to meet their deadlines.

    Genetic counselling in the era of genomic medicine

    Full text link

    Clinical features, antimicrobial susceptibility patterns and genomics of bacteria causing neonatal sepsis in a children's hospital in Vietnam: protocol for a prospective observational study.

    Get PDF
    INTRODUCTION: The clinical syndrome of neonatal sepsis, comprising signs of infection, septic shock and organ dysfunction in infants ≀4 weeks of age, is a frequent sequel to bloodstream infection and mandates urgent antimicrobial therapy. Bacterial characterisation and antimicrobial susceptibility testing is vital for ensuring appropriate therapy, as high rates of antimicrobial resistance (AMR), especially in low-income and middle-income countries, may adversely affect outcome. Ho Chi Minh City (HCMC) in Vietnam is a rapidly expanding city in Southeast Asia with a current population of almost 8 million. There are limited contemporary data on the causes of neonatal sepsis in Vietnam, and we hypothesise that the emergence of multidrug resistant bacteria is an increasing problem for the appropriate management of sepsis cases. In this study, we aim to investigate the major causes of neonatal sepsis and assess disease outcomes by clinical features, antimicrobial susceptibility profiles and genome composition. METHOD AND ANALYSIS: We will conduct a prospective observational study to characterise the clinical and microbiological features of neonatal sepsis in a major children's hospital in HCMC. All bacteria isolated from blood subjected to whole genome sequencing. We will compare clinical variables and outcomes between different bacterial species, genome composition and AMR gene content. AMR gene content will be assessed and stratified by species, years and contributing hospital departments. Genome sequences will be analysed to investigate phylogenetic relationships. ETHICS AND DISSEMINATION: The study will be conducted in accordance with the principles of the Declaration of Helsinki and the International Council on Harmonization Guidelines for Good Clinical Practice. Ethics approval has been provided by the Oxford Tropical Research Ethics Committee 35-16 and Vietnam Children's Hospital 1 Ethics Committee 73/GCN/BVND1. The findings will be disseminated at international conferences and peer-reviewed journals. TRIAL REGISTRATION NUMBER: ISRCTN69124914; Pre-results

    Periodic and Quasiperiodic Motion of an Elongated Microswimmer in Poiseuille Flow

    Full text link
    We study the dynamics of a prolate spheroidal microswimmer in Poiseuille flow for different flow geometries. When moving between two parallel plates or in a cylindrical microchannel, the swimmer performs either periodic swinging or periodic tumbling motion. Although the trajectories of spherical and elongated swimmers are qualitatively similar, the swinging and tumbling frequency strongly depends on the aspect ratio of the swimmer. In channels with reduced symmetry the swimmers perform quasiperiodic motion which we demonstrate explicitely for swimming in a channel with elliptical cross section

    From Climate Change to Pandemics: Decision Science Can Help Scientists Have Impact

    Get PDF
    Scientific knowledge and advances are a cornerstone of modern society. They improve our understanding of the world we live in and help us navigate global challenges including emerging infectious diseases, climate change and the biodiversity crisis. However, there is a perpetual challenge in translating scientific insight into policy. Many articles explain how to better bridge the gap through improved communication and engagement, but we believe that communication and engagement are only one part of the puzzle. There is a fundamental tension between science and policy because scientific endeavors are rightfully grounded in discovery, but policymakers formulate problems in terms of objectives, actions and outcomes. Decision science provides a solution by framing scientific questions in a way that is beneficial to policy development, facilitating scientists’ contribution to public discussion and policy. At its core, decision science is a field that aims to pinpoint evidence-based management strategies by focussing on those objectives, actions, and outcomes defined through the policy process. The importance of scientific discovery here is in linking actions to outcomes, helping decision-makers determine which actions best meet their objectives. In this paper we explain how problems can be formulated through the structured decisionmaking process. We give our vision for what decision science may grow to be, describing current gaps in methodology and application. By better understanding and engaging with the decision-making processes, scientists can have greater impact and make stronger contributions to important societal problems.Christopher M. Baker, Patricia T. Campbell, Iadine Chades, Angela J. Dean, Susan M. Hester, Matthew H. Holden, James M. McCaw, Jodie McVernon, Robert Moss, Freya M. Shearer, and Hugh P. Possingha

    Effects of follicular phase exercise on luteinizing hormone pulse characteristics in sedentary eumenorrhoeic women

    Full text link
    OBJECTIVE Current studies reveal little regarding the Inception of exercise-induced LH changes during physical training. This study aimed to assess the susceptibility of the hypothalamic–pituitary axis to the acute physical stress of exercise in untrained, physically inactive women. The acute effects of submaximal endurance exercise upon the pulsatile LH secretion in the follicular phase were compared with those accompanying leisurely strolling for a similar time period. SUBJECTS All subjects were eumenorrhoelc, as determined by biphasic temperature patterns, detection of the urinary LH surge, and mid-luteal serum progesterone levels. Subjects were not physically active and had little history of strenuous exercise ( V o 2 max = 38·0 ± 1·8) (mean ± SEM) ml/kg/min). DESIGN All women completed a 13·5-hour pulsatility test which included three consecutive 20-minute runs on a treadmill at 50, 60 and 70% of the subjects’maximum oxygen uptake ( n = 16). Six of these same subjects completed a separate test on another occasion in which one hour of leisurely strolling was substituted for exercise. Blood was sampled every 10 minutes via an indwelling cannula for 4·5 hours before and 8 hours after one hour of exercise and or strolling. MEASUREMENTS A pulse algorithm (Pulsar) was used to quantify LH pulse characteristics. RESULTS Exercise produced no significant effects upon LH pulse frequency or mean serum LH concentration. However, exercise of moderate intensity caused a significant increase in LH pulse amplitude ( P < 0·05). Strolling produced no significant changes in LH secretion. CONCLUSION Acute exercise of moderate intensity in the follicular phase of untrained women is an insufficient stimulus to inhibit the GnRH pulse generator in the post-exercise period, yet may produce a slight stimulatory effect on the amount of LH released per pulsePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73507/1/j.1365-2265.1994.tb02794.x.pd
    • 

    corecore