26 research outputs found

    Studies on the Modification of Commercial Bisphenol-A-Based Epoxy Resin Using Different Multifunctional Epoxy Systems

    Get PDF
    The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition

    Tribo-Mechanical Characterization of Carbon Fiber-Reinforced Cyanate Ester Resins Modified With Fillers

    Get PDF
    High-performance polymer composites are being increasingly favored for structural applications. For this purpose, efforts are being focused on exploring the potential of high-performance thermoplastics and thermosets. Cyanate ester (CE) resin is a special thermoset that can be used at up to 400 °C without any considerable degradation; however, its tribological properties are not at the adequate level. Hence, it is needed to use this polymer in composite form with the fibrous/particulate reinforcement to impart better tribological properties and mechanical strength via a strong fiber–matrix interface. Carbon fiber/fabrics are at the forefront as reinforcement for specialty polymers. The tribological and tensile properties of cyanate ester (CE) composites-filled graphite, polytetrafluoroethylene (PTFE), and MoS2 micron-sized fillers reinforced with carbon fibers (CF) are investigated experimentally in a block-on-ring setup at 100 N, for 10 h, and with a sliding distance of approximately 10,000 m, against a hardened polished 100Cr6 steel shaft and diamond-like-coated (DLC) 100Cr6 steel shaft. The tribological properties of the composites including the coefficient of friction and specific wear rate are enhanced especially with the incorporation of graphite fillers. The friction coefficient and wear rate of the graphite-based composite was decreased significantly at 5 wt.% of graphite concentration. Further, at the same concentration, the graphite-based composite showed superior tensile properties as compared to the reference system owing to better dispersion and adhesion between the fibers and matrix. Tensile tests are performed to characterize the fiber–matrix interfacial adhesion and other strength propertie

    ‘Resin welding’: A novel route to joining acrylic composite components at room temperature

    Get PDF
    The solubility of acrylic polymer in its own liquid monomer creates the opportunity to ‘weld’ acrylic-matrix (Elium®) composites without the application of heat. In this method, termed resin welding, acrylic monomeric resin is infused between acrylic-matrix composite parts. The resin dissolves and diffuses into the acrylic matrix and creates a continuous material, and a strong bond, when it polymerises, without the sensitivities of traditional welding methods to adherend or bondline thickness. Single lap shear testing was conducted on resin-welded and adhesively-bonded coupons with varying bondline thicknesses and filling fibres, and the bonding and fracture mechanisms were investigated using SEM and the diffusion of dyed acrylic resin. The highest bond strength of resin-welded coupons reached 27.9 MPa, which is 24 % higher than the strongest weld reported in the literature, indicating that resin welding is a promising alternative to traditional bonding and welding methods for acrylic-matrix composites

    Seawater ageing of thermoplastic acrylic hybrid matrix composites for marine applications

    Get PDF
    Increasing usage of polymer composite materials necessitates the development of recyclable alternatives to traditional thermoset matrices or new techniques for recycling these materials. One family of promising recyclable matrices are the room temperature infusible acrylic resins, known commercially as Elium®. If these new materials are to be used in the tidal stream energy and shipping sectors, they must be able to withstand long-term immersion in seawater without significant losses in mechanical properties. In this study, accelerated seawater ageing is applied to acrylic/glass fibre and modified acrylic/glass fibre composites along with a traditional epoxy/glass fibre baseline. The mechanical properties (tensile, flexural, and short beam) are compared before and after ageing, and electron microscopy is used to examine fracture surfaces to determine the effects of water ingress on fracture propagation. In addition, the diffusion coefficients of the composites in seawater are compared and the changes in glass transition temperatures are used to determine the effects of plasticisation

    4D Printing: Materials, Technologies, and Future Applications in the Biomedical Field

    Get PDF
    4D printing can be defined as the fabrication of structures using smart materials that allow the final object to change its shape, properties, or function in response to an external stimulus such as light, heat, or moisture. The available technologies, materials, and applications have evolved significantly since their first development in 2013, with prospective applications within the aerospace, manufacturing, and soft robotic industries. This review focuses on the printing technologies and smart materials currently available for fabricating these structures. The applications of 4D printing within biomedicine are explored with a focus on tissue engineering, drug delivery, and artificial organs. Finally, some ideas for potential uses are proposed. 4D printing is making its mark with seemingly unlimited potential applications, however, its use in mainstream medical treatments relies on further developments and extensive research investments

    Advanced Ultrasonic Inspection of Thick-Section Composite Structures for In-Field Asset Maintenance

    Get PDF
    An investigation into the inspection capabilities of in-field advanced ultrasound detection for use on ultra-thick (20 to 100 mm) glass fibre-reinforced polyester composites is presented. Plates were manufactured using custom moulding techniques, such that delamination flaws were created at calibrated depths. The full matrix capture technique with an on-board total focussing method was used to detect flaws scanned by a 0.5 MHz linear array probe. Flaw through-thickness dimensions were altered to assess the threshold for crack face separation at which delaminations could be identified. Furthermore, part thickness and in-plane flaw dimensions were varied to identify the inspection capability limitations of advanced ultrasonics for thick composites. The results presented in this study demonstrate an inverse relationship between the ability to find delaminations and plate thicknesses, with inspections successful at depths up to 74 mm. When the delamination thickness exhibited surface-to-surface contact, the inspection capability was reduced to 35 mm. There was an exponential decay relationship between the accuracy of the flaw depth measurement and plate thickness, likely due to the necessity of low probe frequencies. The effective inspection depth was determined to be in the range of 1 to 20 times the wavelength. It is speculated that the accuracy of measurements could be improved using probes with novel coupling solutions, and detectors with optimised signal processing/filtration algorithms

    Accelerated seawater ageing and fatigue performance of glass fibre reinforced thermoplastic composites for marine and tidal energy applications

    Get PDF
    The use of thermoplastic composites as a sustainable alternative to thermosets is gaining increasing popularity due to their improved recyclability at the end of life. The fatigue performance of glass fibre/acrylic, glass fibre/acrylic- polyphenylene ether, and glass fibre/epoxy specimens, under three distinct upper stress levels (R-ratio = 0.1; f = 5 Hz) was studied. S–N curves were established for these specimens both before and after immersing them for three months in seawater (temperature: 50 °C). The dry thermoplastic composites exhibited similar fatigue performance to the thermoset counterpart at higher stress levels, with thermosets showing greater endurance at lower stress levels. Interestingly, the aged specimens showed comparable fatigue endurance, with a slight advantage in favour of the thermoplastic composites and less variability in their data. This study offers important insights into the fatigue performance of thermoplastic composites, emphasising their potential as sustainable alternatives to conventional thermoset composites for various marine applications

    Thermoplastic RTM: Impact Properties of Anionically Polymerised Polyamide 6 Composites for Structural Automotive Parts

    Get PDF
    This study investigates the impact behaviour and post-impact performance of polyamide-6 glass fibre reinforced composites, manufactured by thermoplastic resin transfer moulding. Impact test samples were extracted from quasi-isotropic laminates using two different glass fibre sizings, both with a fibre volume fraction of approximately 52%. A previous study showed that one of these sizings enhanced the interfacial strength and Mode I fracture toughness; however, the effects of the sizing on out-of-plane impact is of greater significance in terms of automotive applications. A drop-weight impact tester was used to determine out-of-plane impact performance for both sizings in terms of impact load-induced and energy returned from the striker. High-speed video of the impact response was simultaneously captured. Testing was carried out at three impact energy levels: two sub-penetration and one full penetration. The impact damage area was observed, and the post-damage compression properties of samples were measured to determine the reduction in their strength and stiffness. Results showed that the use of different sizing technologies had little effect on the post-impact compressive properties and that penetration led to only a 29% drop in compression strength. Overall, the outcomes of this work demonstrate the potential of these materials in automotive applications
    corecore