32 research outputs found

    Slotted Aloha for Networked Base Stations

    Full text link
    We study multiple base station, multi-access systems in which the user-base station adjacency is induced by geographical proximity. At each slot, each user transmits (is active) with a certain probability, independently of other users, and is heard by all base stations within the distance rr. Both the users and base stations are placed uniformly at random over the (unit) area. We first consider a non-cooperative decoding where base stations work in isolation, but a user is decoded as soon as one of its nearby base stations reads a clean signal from it. We find the decoding probability and quantify the gains introduced by multiple base stations. Specifically, the peak throughput increases linearly with the number of base stations mm and is roughly m/4m/4 larger than the throughput of a single-base station that uses standard slotted Aloha. Next, we propose a cooperative decoding, where the mutually close base stations inform each other whenever they decode a user inside their coverage overlap. At each base station, the messages received from the nearby stations help resolve collisions by the interference cancellation mechanism. Building from our exact formulas for the non-cooperative case, we provide a heuristic formula for the cooperative decoding probability that reflects well the actual performance. Finally, we demonstrate by simulation significant gains of cooperation with respect to the non-cooperative decoding.Comment: conference; submitted on Dec 15, 201

    Large deviations rates for stochastic gradient descent with strongly convex functions

    Full text link
    Recent works have shown that high probability metrics with stochastic gradient descent (SGD) exhibit informativeness and in some cases advantage over the commonly adopted mean-square error-based ones. In this work we provide a formal framework for the study of general high probability bounds with SGD, based on the theory of large deviations. The framework allows for a generic (not-necessarily bounded) gradient noise satisfying mild technical assumptions, allowing for the dependence of the noise distribution on the current iterate. Under the preceding assumptions, we find an upper large deviations bound for SGD with strongly convex functions. The corresponding rate function captures analytical dependence on the noise distribution and other problem parameters. This is in contrast with conventional mean-square error analysis that captures only the noise dependence through the variance and does not capture the effect of higher order moments nor interplay between the noise geometry and the shape of the cost function. We also derive exact large deviation rates for the case when the objective function is quadratic and show that the obtained function matches the one from the general upper bound hence showing the tightness of the general upper bound. Numerical examples illustrate and corroborate theoretical findings.Comment: 32 pages, 2 figure

    Distributed Detection over Random Networks: Large Deviations Performance Analysis

    Full text link
    We study the large deviations performance, i.e., the exponential decay rate of the error probability, of distributed detection algorithms over random networks. At each time step kk each sensor: 1) averages its decision variable with the neighbors' decision variables; and 2) accounts on-the-fly for its new observation. We show that distributed detection exhibits a "phase change" behavior. When the rate of network information flow (the speed of averaging) is above a threshold, then distributed detection is asymptotically equivalent to the optimal centralized detection, i.e., the exponential decay rate of the error probability for distributed detection equals the Chernoff information. When the rate of information flow is below a threshold, distributed detection achieves only a fraction of the Chernoff information rate; we quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of distributed detection over random networks.Comment: 30 pages, journal, submitted on December 3rd, 201

    A One-shot Framework for Distributed Clustered Learning in Heterogeneous Environments

    Full text link
    The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments in which users obtain data from one of KK different distributions. In the proposed setup, the grouping of users (based on the data distributions they sample), as well as the underlying statistical properties of the distributions, are apriori unknown. A family of One-shot Distributed Clustered Learning methods (ODCL-C\mathcal{C}) is proposed, parametrized by the set of admissible clustering algorithms C\mathcal{C}, with the objective of learning the true model at each user. The admissible clustering methods include KK-means (KM) and convex clustering (CC), giving rise to various one-shot methods within the proposed family, such as ODCL-KM and ODCL-CC. The proposed one-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees. In particular, for strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error (MSE) rates in terms of the sample size. An explicit characterization of the threshold is provided in terms of problem parameters. The trade-offs with respect to selecting various clustering methods (ODCL-CC, ODCL-KM) are discussed and significant improvements over state-of-the-art are demonstrated. Numerical experiments illustrate the findings and corroborate the performance of the proposed methods
    corecore