3 research outputs found

    Pulmonary delivery of mucus-traversing PF127-modified silk fibroin nanoparticles loading with quercetin for lung cancer therapy

    No full text
    The mucosal barrier remains a major barrier in the pulmonary drug delivery system, as mucociliary clearance in the airway accelerates the removal of inhaled nanoparticles (NPs). Herein, we designed and developed the inhalable Pluronic F127-modified silk fibroin NPs loading with quercetin (marked as QR-SF (PF127) NPs), aiming to solve the airway mucus barrier and improve the cancer therapeutic effect of QR. The PF127 coating on the SF NPs could attenuate the interaction between NPs and mucin proteins, thus facilitating the diffusion of SF(PF127) NPs in the mucus layer. The QR-SF (PF127) NPs had particle sizes of approximately 200 nm with negatively charged surfaces and showed constant drug release properties. Fluorescence recovery after photobleaching (FRAP) assay and transepithelial transport test showed that QR-SF (PF127) NPs exhibited superior mucus-penetrating ability in artificial mucus and monolayer Calu-3 cell model. Notably, a large amount of QR-SF (PF127) NPs distributed uniformly in the mice airway section, indicating the good retention of NPs in the respiratory tract. The mice melanoma lung metastasis model was established, and the therapeutic effect of QR-SF (PF127) NPs was significantly improved in vivo. PF127-modified SF NPs may be a promising strategy to attenuate the interaction with mucin proteins and enhance mucus penetration efficiency in the pulmonary drug delivery system

    Leflunomide Inhibits rat-to-Mouse Cardiac Xenograft Rejection by Suppressing Adaptive Immune Cell Response and NF-κB Signaling Activation

    No full text
    Xenotransplantation is a potential solution for the severe shortage of human donor organs and tissues. The generation of humanized animal models attenuates strong innate immune responses, such as complement-mediated hyperacute rejection. However, acute vascular rejection and cell mediated rejection remain primary barriers to xenotransplantation, which limits its clinical application. In this study, we systematically investigated the immunosuppressive effect of LEF using a rat-to-mouse heart xenotransplantation model. SD rat xenogeneic hearts were transplanted into C57BL/6 mice, and survived 34.5 days after LEF treatment. In contrast, BALB/c allogeneic hearts were transplanted into C57BL/6 mice, and survived 31 days after LEF treatment. Compared to normal saline treatment, LEF treatment decreased xenoreactive T cells and CD19+ B cells in recipient splenocytes. Most importantly, LEF treatment protected myocardial cells by decreasing xenoreactive T and B cell infiltration, inflammatory gene expression, and IgM deposition in grafts. In vivo assays revealed that LEF treatment eliminated xenoreactive and alloreactive T and B lymphocytes by suppressing the activation of the NF-κB signaling pathway. Taken together, these observations complement the evidence supporting the potential use of LEF in xenotransplantation
    corecore