156 research outputs found

    Method of characteristics and solution of DGLAP evolution equation in leading order (LO) and next to leading order (NLO) at small-x

    Full text link
    In this paper the singlet and non-singlet structure functions have been obtained by solving Dokshitzer, Gribove, Lipatov, Alterelli, Parisi (DGLAP) evolution equations in leading order (LO) and next to leading order (NLO) at the small x limit. Here we have used a Taylor Series expansion and then the method of characteristics to solve the evolution equations. We have also calculated t and x-evolutions of deuteron structure function and the results are compared with the New Muon Collaboration (NMC) data.Comment: 16 pages including 7 figure

    Calculation of Electric and Magnetic Field under AC Transmission and Distribution Lines in Guwahati City

    Get PDF
    With the increasing population rate and industrial growth rate, the demand for power has escalated significantly. High Voltage AC transmission can be termed as one of the measures to quench this increasing energy demands. This paper evaluates the safety limits for electric and magnetic fields generated around the AC transmission and distribution lines at various voltage levels and configuration. Surface current density for an average height human being has also been calculated for safety precautions.Keywords: Safety limits, electric field, magnetic field, surface current density*Cite as: Manash Jyoti Baishya, Satyajit Bhuyan, N.K.Kishore, “Calculation of Electric and Magnetic Field under AC Transmission and Distribution Lines in Guwahati City†ADBU J.Engg.Tech., 1(2014) 0011406(5pp

    Comparison of a Genetic Algorithm Variable Selection and Interval Partial Least Squares for quantitative analysis of lactate in PBS

    Get PDF
    Blood lactate is an important biomarker that has been linked to morbidity and mortality of critically ill patients, acute ischemic stroke, septic shock, lung injuries, insulin resistance in diabetic patients, and cancer. Currently, the clinical measurement of blood lactate is done by collecting intermittent blood samples. Therefore, noninvasive, optical measurement of this significant biomarker would lead to a big leap in healthcare. This study, presents a quantitative analysis of the optical properties of lactate. The benefits of wavelength selection for the development of accurate, robust, and interpretable predictive models have been highlighted in the literature. Additionally, there is an obvious, time- and cost-saving benefit to focusing on narrower segments of the electromagnetic spectrum in practical applications. To this end, a dataset consisting of 47 spectra of Na-lactate and Phosphate Buffer Solution (PBS) was produced using a Fourier transform infrared spectrometer, and subsequently, a comparative study of the application of a genetic algorithm-based wavelength selection and two interval selection methods was carried out. The high accuracy of predictions using the developed models underlines the potential for optical measurement of lactate. Moreover, an interesting finding is the emergence of local features in the proposed genetic algorithm, while, unlike the investigated interval selection methods, no explicit constraints on the locality of features was imposed. Finally, the proposed genetic algorithm suggests the formation of α-hydroxy-esters methyl lactate in the solutions while the other investigated methods fail to indicate this
    • …
    corecore