4,799 research outputs found

    The breaking of quantum double symmetries by defect condensation

    Full text link
    In this paper, we study the phenomenon of Hopf or more specifically quantum double symmetry breaking. We devise a criterion for this type of symmetry breaking which is more general than the one existing in the literature, and therefore extends the number of possible breaking patterns that can be described consistently. We start by recalling why the extended symmetry notion of quantum double algebras is an optimal tool when analyzing a wide variety of two dimensional physical systems including quantum fluids, crystals and liquid crystals. The power of this approach stems from the fact that one may characterize both ordinary and topological modes as representations of a single (generally non-Abelian) Hopf symmetry. In principle a full classification of defect mediated as well as ordinary symmetry breaking patterns and subsequent confinement phenomena can be given. The formalism applies equally well to systems exhibiting global, local, internal and/or external (i.e. spatial) symmetries. The subtle differences in interpretation for the various situations are pointed out. We show that the Hopf symmetry breaking formalism reproduces the known results for ordinary (electric) condensates, and we derive formulae for defect (magnetic) condensates which also involve the phenomenon of symmetry restoration. These results are applied in two papers which will be published in parallel.Comment: 65 pages, 7 figures, correction in table 3, updated reference

    Nematic phases and the breaking of double symmetries

    Full text link
    In this paper we present a phase classification of (effectively) two-dimensional non-Abelian nematics, obtained using the Hopf symmetry breaking formalism. In this formalism one exploits the underlying double symmetry which treats both ordinary and topological modes on equal footing, i.e. as representations of a single (non-Abelian) Hopf symmetry. The method that exists in the literature (and is developed in a paper published in parallel) allows for a full classification of defect mediated as well as ordinary symmetry breaking patterns and a description of the resulting confinement and/or liberation phenomena. After a summary of the formalism, we determine the double symmetries for tetrahedral, octahedral and icosahedral nematics and their representations. Subsequently the breaking patterns which follow from the formation of admissible defect condensates are analyzed systematically. This leads to a host of new (quantum and classical) nematic phases. Our result consists of a listing of condensates, with the corresponding intermediate residual symmetry algebra and the symmetry algebra characterizing the effective ``low energy'' theory of surviving unconfined and liberated degrees of freedom in the broken phase. The results suggest that the formalism is applicable to a wide variety of two dimensional quantum fluids, crystals and liquid crystals.Comment: 17 pages, 2 figures, correction to table VII, updated reference

    On a core instability of 't Hooft Polyakov monopoles

    Full text link
    We discuss a core instability of 't Hooft Polyakov monopoles in Alice electrodynamics type of models in which charge conjugation symmetry is gauged. The monopole may deform into a toroidal defect which carries an Alice flux and a (non-localizable) magnetic Cheshire charge.Comment: 7 pages, 4 figure

    Simulations of Alice Electrodynamics on a Lattice

    Get PDF
    In this paper we present results of numerical simulations and some (analytical) approximations of a compact U(1)\ltimes\ZZ_2 lattice gauge theory, including an extra bare mass term for Alice fluxes. The subtle interplay between Alice fluxes and (Cheshire) magnetic charges is analysed. We determine the phase diagram and some characteristics of the model in three and four dimensions. The results of the numerical simulations in various regimes, compare well with some analytic approximations.Comment: 17 pages, 16 figures; minor change

    To be or not to be? Magnetic monopoles in non-abelian gauge theories

    Full text link
    Magnetic monopoles form an inspiring chapter of theoretical physics, covering a variety of surprising subjects. We review their role in non-abelian gauge theories. An expose of quite exquisite physics derived from a hypothetical particle species, because the fact remains that in spite of ever more tempting arguments from theory, monopoles have never reared their head in experiment. For many relevant particulars, references to the original literature are provided.Comment: 34 pages, 7 figures, Contribution to "Fifty Years of Yang- Mills Theory", edited by G. 't Hooft. Some extra references have been added in the revised versio

    Topological entanglement entropy relations for multi phase systems with interfaces

    Get PDF
    We study the change in topological entanglement entropy that occurs when a two-dimensional system in a topologically ordered phase undergoes a transition to another such phase due to the formation of a Bose condensate. We also consider the topological entanglement entropy of systems with domains in different topological phases, and of phase boundaries between these domains. We calculate the topological entropy of these interfaces and derive two fundamental relations between the interface topological entropy and the bulk topological entropies on both sides of the interface.Comment: 4 pages, 3 figures, 2 tables, revte

    Condensate induced transitions between topologically ordered phases

    Get PDF
    We investigate transitions between topologically ordered phases in two spatial dimensions induced by the condensation of a bosonic quasiparticle. To this end, we formulate an extension of the theory of symmetry breaking phase transitions which applies to phases with topological excitations described by quantum groups or modular tensor categories. This enables us to deal with phases whose quasiparticles have non-integer quantum dimensions and obey braid statistics. Many examples of such phases can be constructed from two-dimensional rational conformal field theories and we find that there is a beautiful connection between quantum group symmetry breaking and certain well-known constructions in conformal field theory, notably the coset construction, the construction of orbifold models and more general conformal extensions. Besides the general framework, many representative examples are worked out in detail.Comment: 27 pages, 3 figures, RevTe

    S-duality in SU(3) Yang-Mills Theory with Non-abelian Unbroken Gauge Group

    Full text link
    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group HH are in one-to-one correspondence with coherent states of a dual or magnetic group H~\tilde H. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2,Z)-mapping between sectors which leaves the fusion rules invariant.Comment: 27 pages, harvmac, amssym, one eps figure; minor misprints corrected and title amende
    corecore